scholarly journals Solution of certain Pell equations

2018 ◽  
Vol 11 (04) ◽  
pp. 1850056 ◽  
Author(s):  
Zahid Raza ◽  
Hafsa Masood Malik

Let [Formula: see text] be any positive integers such that [Formula: see text] and [Formula: see text] is a square free positive integer of the form [Formula: see text] where [Formula: see text] and [Formula: see text] The main focus of this paper is to find the fundamental solution of the equation [Formula: see text] with the help of the continued fraction of [Formula: see text] We also obtain all the positive solutions of the equations [Formula: see text] and [Formula: see text] by means of the Fibonacci and Lucas sequences.Furthermore, in this work, we derive some algebraic relations on the Pell form [Formula: see text] including cycle, proper cycle, reduction and proper automorphism of it. We also determine the integer solutions of the Pell equation [Formula: see text] in terms of [Formula: see text] We extend all the results of the papers [3, 10, 27, 37].

Author(s):  
Ruiqin Fu ◽  
Hai Yang

Let [Formula: see text] be fixed positive integers such that [Formula: see text] is not a perfect square and [Formula: see text] is squarefree, and let [Formula: see text] denote the number of distinct prime divisors of [Formula: see text]. Let [Formula: see text] denote the least solution of Pell equation [Formula: see text]. Further, for any positive integer [Formula: see text], let [Formula: see text] and [Formula: see text], where [Formula: see text] and [Formula: see text]. In this paper, using the basic properties of Pell equations and some known results on binary quartic Diophantine equations, a necessary and sufficient condition for the system of equations [Formula: see text] and [Formula: see text] to have positive integer solutions [Formula: see text] is obtained. By this result, we prove that if [Formula: see text] has a positive integer solution [Formula: see text] for [Formula: see text] or [Formula: see text] according to [Formula: see text] or not, then [Formula: see text] and [Formula: see text], where [Formula: see text] is a positive integer, [Formula: see text] or [Formula: see text] and [Formula: see text] or [Formula: see text] according to [Formula: see text] or not, [Formula: see text] is the integer part of [Formula: see text], except for [Formula: see text]


2021 ◽  
Vol 27 (2) ◽  
pp. 88-100
Author(s):  
Qiongzhi Tang ◽  

Using the theory of Pell equation, we study the non-trivial positive integer solutions of the Diophantine equations $z^2=f(x)^2\pm f(x)f(y)+f(y)^2$ for certain polynomials f(x), which mean to construct integral triangles with two sides given by the values of polynomials f(x) and f(y) with the intersection angle $120^\circ$ or $60^\circ$.


2015 ◽  
Vol 713-715 ◽  
pp. 1483-1486
Author(s):  
Yi Wu ◽  
Zheng Ping Zhang

In this paper, we studied the positive integer solutions of a typical Diophantine equation starting from two basic equations including a Diophantine equation and a Pell equation, and we will prove all the positive integer solutions of the typical Diophantine equation.


2018 ◽  
Vol 122 (1) ◽  
pp. 18 ◽  
Author(s):  
Florian Luca ◽  
Alain Togbé

For an integer $d>2$ which is not a square, we show that there is at most one value of the positive integer $x$ participating in the Pell equation $x^2-dy^2=\pm 1$ which is a Fibonacci number.


2010 ◽  
Vol 81 (2) ◽  
pp. 177-185 ◽  
Author(s):  
BO HE ◽  
ALAIN TOGBÉ

AbstractLet a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.


2018 ◽  
Vol 107 (02) ◽  
pp. 272-288
Author(s):  
TOPI TÖRMÄ

We study generalized continued fraction expansions of the form $$\begin{eqnarray}\frac{a_{1}}{N}\frac{}{+}\frac{a_{2}}{N}\frac{}{+}\frac{a_{3}}{N}\frac{}{+}\frac{}{\cdots },\end{eqnarray}$$ where $N$ is a fixed positive integer and the partial numerators $a_{i}$ are positive integers for all $i$ . We call these expansions $\operatorname{dn}_{N}$ expansions and show that every positive real number has infinitely many $\operatorname{dn}_{N}$ expansions for each $N$ . In particular, we study the $\operatorname{dn}_{N}$ expansions of rational numbers and quadratic irrationals. Finally, we show that every positive real number has, for each $N$ , a $\operatorname{dn}_{N}$ expansion with bounded partial numerators.


2012 ◽  
Vol 55 (4) ◽  
pp. 774-782 ◽  
Author(s):  
R. A. Mollin ◽  
A. Srinivasan

AbstractWe provide a criterion for the central norm to be any value in the simple continued fraction expansion of for any non-square integer D > 1. We also provide a simple criterion for the solvability of the Pell equation x2 – Dy2 = –1 in terms of congruence conditions modulo D.


Author(s):  
Harold S. Erazo ◽  
Carlos A. Gómez ◽  
Florian Luca

In this paper, we show that if [Formula: see text] is the [Formula: see text]th solution of the Pell equation [Formula: see text] for some non-square [Formula: see text], then given any integer [Formula: see text], the equation [Formula: see text] has at most [Formula: see text] integer solutions [Formula: see text] with [Formula: see text] and [Formula: see text], except for the only pair [Formula: see text]. Moreover, we show that this bound is optimal. Additionally, we propose a conjecture about the number of solutions of Pillai’s problem in linear recurrent sequences.


2012 ◽  
Vol 08 (03) ◽  
pp. 813-821 ◽  
Author(s):  
ZHONGFENG ZHANG ◽  
PINGZHI YUAN

Let a, b, c be integers. In this paper, we prove the integer solutions of the equation axy + byz + czx = 0 satisfy max {|x|, |y|, |z|} ≤ 2 max {a, b, c} when a, b, c are odd positive integers, and when a = b = 1, c = -1, the positive integer solutions of the equation satisfy max {x, y, z} < exp ( exp ( exp (5))).


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Yahui Yu ◽  
Xiaoxue Li

Letbandcbe fixed coprime odd positive integers withmin{b,c}>1. In this paper, a classification of all positive integer solutions(x,y,z)of the equation2x+by=czis given. Further, by an elementary approach, we prove that ifc=b+2, then the equation has only the positive integer solution(x,y,z)=(1,1,1), except for(b,x,y,z)=(89,13,1,2)and(2r-1,r+2,2,2), whereris a positive integer withr≥2.


Sign in / Sign up

Export Citation Format

Share Document