continued fraction
Recently Published Documents


TOTAL DOCUMENTS

1552
(FIVE YEARS 173)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
MEIYING LÜ ◽  
ZHENLIANG ZHANG

Abstract For any x in $[0,1)$ , let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be its continued fraction. Let $\psi :\mathbb {N}\to \mathbb {R}^+$ be such that $\psi (n) \to \infty $ as $n\to \infty $ . For any positive integers s and t, we study the set $$ \begin{align*}E(\psi)=\{(x,y)\in [0,1)^2: \max\{a_{sn}(x), a_{tn}(y)\}\ge \psi(n) \ {\text{for all sufficiently large}}\ n\in \mathbb{N}\} \end{align*} $$ and determine its Hausdorff dimension.


2021 ◽  
Vol 13 (3) ◽  
pp. 642-650
Author(s):  
T.M. Antonova

The paper deals with the problem of convergence of the branched continued fractions with two branches of branching which are used to approximate the ratios of Horn's hypergeometric function $H_3(a,b;c;{\bf z})$. The case of real parameters $c\geq a\geq 0,$ $c\geq b\geq 0,$ $c\neq 0,$ and complex variable ${\bf z}=(z_1,z_2)$ is considered. First, it is proved the convergence of the branched continued fraction for ${\bf z}\in G_{\bf h}$, where $G_{\bf h}$ is two-dimensional disk. Using this result, sufficient conditions for the uniform convergence of the above mentioned branched continued fraction on every compact subset of the domain $\displaystyle H=\bigcup_{\varphi\in(-\pi/2,\pi/2)}G_\varphi,$ where \[\begin{split} G_{\varphi}=\big\{{\bf z}\in\mathbb{C}^{2}:&\;{\rm Re}(z_1e^{-i\varphi})<\lambda_1 \cos\varphi,\; |{\rm Re}(z_2e^{-i\varphi})|<\lambda_2 \cos\varphi, \\ &\;|z_k|+{\rm Re}(z_ke^{-2i\varphi})<\nu_k\cos^2\varphi,\;k=1,2;\; \\ &\; |z_1z_2|-{\rm Re}(z_1z_2e^{-2\varphi})<\nu_3\cos^{2}\varphi\big\}, \end{split}\] are established.


2021 ◽  
Vol 13 (3) ◽  
pp. 608-618
Author(s):  
T. Komatsu

It has been known that the Hosoya index of caterpillar graph can be calculated as the numerator of the simple continued fraction. Recently in [MATCH Commun. Math. Comput. Chem. 2020, 84 (2), 399-428], the author introduces a more general graph called caterpillar-bond graph and shows that its Hosoya index can be calculated as the numerator of the general continued fraction. In this paper, we show how the Hosoya index of the graph with non-uniform ring structure can be calculated from the negative continued fraction. We also give the relation between some radial graphs and multidimensional continued fractions in the sense of the Hosoya index.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 310
Author(s):  
Tamara Antonova ◽  
Roman Dmytryshyn ◽  
Serhii Sharyn

The paper is related to the classical problem of the rational approximation of analytic functions of one or several variables, particulary the issues that arise in the construction and studying of continued fraction expansions and their multidimensional generalizations—branched continued fraction expansions. We used combinations of three- and four-term recurrence relations of the generalized hypergeometric function 3F2 to construct the branched continued fraction expansions of the ratios of this function. We also used the concept of correspondence and the research method to extend convergence, already known for a small region, to a larger region. As a result, we have established some convergence criteria for the expansions mentioned above. It is proved that the branched continued fraction expansions converges to the functions that are an analytic continuation of the ratios mentioned above in some region. The constructed expansions can approximate the solutions of certain differential equations and analytic functions, which are represented by generalized hypergeometric function 3F2. To illustrate this, we have given a few numerical experiments at the end.


Author(s):  
Michael Vielhaber ◽  
Mónica del Pilar Canales Chacón ◽  
Sergio Jara Ceballos

AbstractWe introduce rational complexity, a new complexity measure for binary sequences. The sequence s ∈ Bω is considered as binary expansion of a real fraction $s \equiv {\sum }_{k\in \mathbb {N}}s_{k}2^{-k}\in [0,1] \subset \mathbb {R}$ s ≡ ∑ k ∈ ℕ s k 2 − k ∈ [ 0 , 1 ] ⊂ ℝ . We compute its continued fraction expansion (CFE) by the Binary CFE Algorithm, a bitwise approximation of s by binary search in the encoding space of partial denominators, obtaining rational approximations r of s with r → s. We introduce Feedback in$\mathbb {Q}$ ℚ Shift Registers (F$\mathbb {Q}$ ℚ SRs) as the analogue of Linear Feedback Shift Registers (LFSRs) for the linear complexity L, and Feedback with Carry Shift Registers (FCSRs) for the 2-adic complexity A. We show that there is a substantial subset of prefixes with “typical” linear and 2-adic complexities, around n/2, but low rational complexity. Thus the three complexities sort out different sequences as non-random.


Sign in / Sign up

Export Citation Format

Share Document