continued fraction expansion
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 31)

H-INDEX

20
(FIVE YEARS 1)

Author(s):  
Michael Vielhaber ◽  
Mónica del Pilar Canales Chacón ◽  
Sergio Jara Ceballos

AbstractWe introduce rational complexity, a new complexity measure for binary sequences. The sequence s ∈ Bω is considered as binary expansion of a real fraction $s \equiv {\sum }_{k\in \mathbb {N}}s_{k}2^{-k}\in [0,1] \subset \mathbb {R}$ s ≡ ∑ k ∈ ℕ s k 2 − k ∈ [ 0 , 1 ] ⊂ ℝ . We compute its continued fraction expansion (CFE) by the Binary CFE Algorithm, a bitwise approximation of s by binary search in the encoding space of partial denominators, obtaining rational approximations r of s with r → s. We introduce Feedback in$\mathbb {Q}$ ℚ Shift Registers (F$\mathbb {Q}$ ℚ SRs) as the analogue of Linear Feedback Shift Registers (LFSRs) for the linear complexity L, and Feedback with Carry Shift Registers (FCSRs) for the 2-adic complexity A. We show that there is a substantial subset of prefixes with “typical” linear and 2-adic complexities, around n/2, but low rational complexity. Thus the three complexities sort out different sequences as non-random.


Author(s):  
LINGLING HUANG ◽  
CHAO MA

Abstract This paper is concerned with the growth rate of the product of consecutive partial quotients relative to the denominator of the convergent for the continued fraction expansion of an irrational number. More precisely, given a natural number $m,$ we determine the Hausdorff dimension of the following set: $$ \begin{align*} E_m(\tau)=\bigg\{x\in [0,1): \limsup\limits_{n\rightarrow\infty}\frac{\log (a_n(x)a_{n+1}(x)\cdots a_{n+m}(x))}{\log q_n(x)}=\tau\bigg\}, \end{align*} $$ where $\tau $ is a nonnegative number. This extends the dimensional result of Dirichlet nonimprovable sets (when $m=1$ ) shown by Hussain, Kleinbock, Wadleigh and Wang.


2021 ◽  
pp. 1-31
Author(s):  
CARLO CARMINATI ◽  
GIULIO TIOZZO

Abstract We define a family $\mathcal {B}(t)$ of compact subsets of the unit interval which provides a filtration of the set of numbers whose continued fraction expansion has bounded digits. We study how the set $\mathcal {B}(t)$ changes as the parameter t ranges in $[0,1]$ , and see that the family undergoes period-doubling bifurcations and displays the same transition pattern from periodic to chaotic behaviour as the family of real quadratic polynomials. The set $\mathcal {E}$ of bifurcation parameters is a fractal set of measure zero and Hausdorff dimension $1$ . The Hausdorff dimension of $\mathcal {B}(t)$ varies continuously with the parameter, and we show that the dimension of each individual set equals the dimension of the corresponding section of the bifurcation set $\mathcal {E}$ .


2021 ◽  
Author(s):  
philip olivier

<div> <div> <div> <p>This paper is motivated by the need in certain engineering contexts to construct approximations for irrational functions in the complex variable z. The main mathematical tool that will be used is a special continued fraction expansion that cause the rational approximant to collocate the irrational function at specific important values of z. This paper introduces two theorems that facilitate the construction of the rational approxima- tion. </p> </div> </div> </div>


2021 ◽  
Author(s):  
philip olivier

<div> <div> <div> <p>This paper is motivated by the need in certain engineering contexts to construct approximations for irrational functions in the complex variable z. The main mathematical tool that will be used is a special continued fraction expansion that cause the rational approximant to collocate the irrational function at specific important values of z. This paper introduces two theorems that facilitate the construction of the rational approxima- tion. </p> </div> </div> </div>


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 437
Author(s):  
Xinyi Qiu ◽  
Hui Feng ◽  
Bo Hu

Existing graph filters, polynomial or rational, are mainly of integer order forms. However, there are some frequency responses which are not easily achieved by integer order approximation. It will substantially increase the flexibility of the filters if we relax the integer order to fractional ones. Motivated by fractional order models, we introduce the fractional order graph filters (FOGF), and propose to design the filter coefficients by genetic algorithm. In order to implement distributed computation on a graph, an FOGF can be approximated by the continued fraction expansion and transformed to an infinite impulse response graph filter.


Author(s):  
LUCA MARCHESE

Abstract We consider the continued fraction expansion of real numbers under the action of a nonuniform lattice in $\text {PSL}(2,{\mathbb R})$ and prove metric relations between the convergents and a natural geometric notion of good approximations.


2021 ◽  
Vol 109 (123) ◽  
pp. 143-151
Author(s):  
Khalil Ayadi ◽  
Awatef Azaza ◽  
Salah Beldi

We exhibit explicitly the continued fraction expansion of some algebraic power series over a finite field. We also discuss some Diophantine equations on the ring of polynomials, which are intimately related to these power series.


Sign in / Sign up

Export Citation Format

Share Document