A note on class sizes of vanishing elements in finite groups

Author(s):  
Qingjun Kong ◽  
Shi Chen

Let [Formula: see text] and [Formula: see text] be normal subgroups of a finite group [Formula: see text]. We obtain th supersolvability of a factorized group [Formula: see text], given that the conjugacy class sizes of vanishing elements of prime-power order in [Formula: see text] and [Formula: see text] are square-free.

2013 ◽  
Vol 13 (02) ◽  
pp. 1350100 ◽  
Author(s):  
GUOHUA QIAN ◽  
YANMING WANG

Let p be a fixed prime, G a finite group and P a Sylow p-subgroup of G. The main results of this paper are as follows: (1) If gcd (p-1, |G|) = 1 and p2 does not divide |xG| for any p′-element x of prime power order, then G is a solvable p-nilpotent group and a Sylow p-subgroup of G/Op(G) is elementary abelian. (2) Suppose that G is p-solvable. If pp-1 does not divide |xG| for any element x of prime power order, then the p-length of G is at most one. (3) Suppose that G is p-solvable. If pp-1 does not divide χ(1) for any χ ∈ Irr (G), then both the p-length and p′-length of G are at most 2.


Author(s):  
Xianhe Zhao ◽  
Yanyan Zhou ◽  
Ruifang Chen ◽  
Qin Huang

Let [Formula: see text] be an element of a finite group [Formula: see text], and [Formula: see text] a prime factor of the order of [Formula: see text]. It is clear that there always exists a unique minimal subnormal subgroup containing [Formula: see text], say [Formula: see text]. We call the conjugacy class of [Formula: see text] in [Formula: see text] the sub-class of [Formula: see text] in [Formula: see text], see [G. Qian and Y. Yang, On sub-class sizes of finite groups, J. Aust. Math. Soc. (2020) 402–411]. In this paper, assume that [Formula: see text] is the product of the subgroups [Formula: see text] and [Formula: see text], we investigate the solvability, [Formula: see text]-nilpotence and supersolvability of the group [Formula: see text] under the condition that the sub-class sizes of prime power order elements in [Formula: see text] are [Formula: see text] free, [Formula: see text] free and square free, respectively, so that some known results relevant to conjugacy class sizes are generalized.


2011 ◽  
Vol 18 (04) ◽  
pp. 685-692
Author(s):  
Xuanli He ◽  
Shirong Li ◽  
Xiaochun Liu

Let G be a finite group, p the smallest prime dividing the order of G, and P a Sylow p-subgroup of G with the smallest generator number d. Consider a set [Formula: see text] of maximal subgroups of P such that [Formula: see text]. It is shown that if every member [Formula: see text] of is either S-quasinormally embedded or C-normal in G, then G is p-nilpotent. As its applications, some further results are obtained.


2018 ◽  
Vol 98 (2) ◽  
pp. 251-257 ◽  
Author(s):  
JULIAN BROUGH ◽  
QINGJUN KONG

The first author [J. Brough, ‘On vanishing criteria that control finite group structure’, J. Algebra458 (2016), 207–215] has shown that for certain arithmetical results on conjugacy class sizes it is enough to consider only the vanishing conjugacy class sizes. In this paper we further weaken the conditions to consider only vanishing elements of prime power order.


Author(s):  
Thomas J. Laffey ◽  
Desmond MacHale

AbstractLet G be a finite group and let Aut(G) be its automorphism group. Then G is called a k-orbit group if G has k orbits (equivalence classes) under the action of Aut(G). (For g, hG, we have g ~ h if ga = h for some Aut(G).) It is shown that if G is a k-orbit group, then kGp + 1, where p is the least prime dividing the order of G. The 3-orbit groups which are not of prime-power order are classified. It is shown that A5 is the only insoluble 4-orbit group, and a structure theorem is proved about soluble 4-orbit groups.


2008 ◽  
Vol 15 (03) ◽  
pp. 479-484 ◽  
Author(s):  
M. Ramadan

Let G be a finite group. A subgroup K of a group G is called an [Formula: see text]-subgroup of G if NG(K) ∩ Kx ≤ K for all x ∈ G. The set of all [Formula: see text]-subgroups of G is denoted by [Formula: see text]. In this paper, we investigate the structure of a group G under the assumption that certain abelian subgroups of prime power order belong to [Formula: see text].


2018 ◽  
Vol 97 (3) ◽  
pp. 406-411 ◽  
Author(s):  
YONG YANG ◽  
GUOHUA QIAN

Let $G$ be a finite group. Let $\operatorname{cl}(G)$ be the set of conjugacy classes of $G$ and let $\operatorname{ecl}_{p}(G)$ be the largest integer such that $p^{\operatorname{ecl}_{p}(G)}$ divides $|C|$ for some $C\in \operatorname{cl}(G)$. We prove the following results. If $\operatorname{ecl}_{p}(G)=1$, then $|G:F(G)|_{p}\leq p^{4}$ if $p\geq 3$. Moreover, if $G$ is solvable, then $|G:F(G)|_{p}\leq p^{2}$.


2019 ◽  
Vol 22 (5) ◽  
pp. 933-940
Author(s):  
Jinbao Li ◽  
Yong Yang

Abstract Let G be a finite group and p a prime. Let {\operatorname{cl}(G)} be the set of conjugacy classes of G, and let {\operatorname{ecl}_{p}(G)} be the largest integer such that {p^{\operatorname{ecl}_{p}(G)}} divides {|C|} for some {C\in\operatorname{cl}(G)} . We show that if {p\geq 3} and {\operatorname{ecl}_{p}(G)=1} , then {\lvert G\mskip 1.0mu \mathord{:}\mskip 1.0mu O_{p}(G)\rvert_{p}\leq p^{3}} . This improves the main result of Y. Yang and G. Qian, On p-parts of conjugacy class sizes of finite groups, Bull. Aust. Math. Soc. 97 2018, 3, 406–411.


Author(s):  
M. Bianchi ◽  
E. Pacifici ◽  
R. D. Camina ◽  
Mark L. Lewis

Let G be a finite group, and let cs(G) be the set of conjugacy class sizes of G. Recalling that an element g of G is called a vanishing element if there exists an irreducible character of G taking the value 0 on g, we consider one particular subset of cs(G), namely, the set vcs(G) whose elements are the conjugacy class sizes of the vanishing elements of G. Motivated by the results inBianchi et al. (2020, J. Group Theory, 23, 79–83), we describe the class of the finite groups G such that vcs(G) consists of a single element under the assumption that G is supersolvable or G has a normal Sylow 2-subgroup (in particular, groups of odd order are covered). As a particular case, we also get a characterization of finite groups having a single vanishing conjugacy class size which is either a prime power or square-free.


Sign in / Sign up

Export Citation Format

Share Document