Proceedings of the Third Workshop on Virtual Machines and Intermediate Languages - VMIL '09

2009 ◽  
SIMULATION ◽  
2021 ◽  
pp. 003754972110641
Author(s):  
Aurelio Vivas ◽  
Harold Castro

Since simulation became the third pillar of scientific research, several forms of computers have become available to drive computer aided simulations, and nowadays, clusters are the most popular type of computers supporting these tasks. For instance, cluster settings, such as the so-called supercomputers, cluster of workstations (COW), cluster of desktops (COD), and cluster of virtual machines (COV) have been considered in literature to embrace a variety of scientific applications. However, those scientific applications categorized as high-performance computing (HPC) are conceptually restricted to be addressed only by supercomputers. In this aspect, we introduce the notions of cluster overhead and cluster coupling to assess the capacity of non-HPC systems to handle HPC applications. We also compare the cluster overhead with an existing measure of overhead in computing systems, the total parallel overhead, to explain the correctness of our methodology. The evaluation of capacity considers the seven dwarfs of scientific computing, which are well-known, scientific computing building blocks considered in the development of HPC applications. The evaluation of these building blocks provides insights regarding the strengths and weaknesses of non-HPC systems to deal with future HPC applications developed with one or a combination of these algorithmic building blocks.


Sign in / Sign up

Export Citation Format

Share Document