Efficient analysis and execution of correct and complete model transformations based on triple graph grammars

Author(s):  
Frank Hermann ◽  
Hartmut Ehrig ◽  
Ulrike Golas ◽  
Fernando Orejas
2013 ◽  
Vol 24 (5) ◽  
pp. 365-388 ◽  
Author(s):  
Hartmut Ehrig ◽  
Frank Hermann ◽  
Hanna Schölzel ◽  
Christoph Brandt

Author(s):  
Duc-Hanh Dang ◽  
Martin Gogolla

Model transformation is an important building block for model-driven approaches. It puts forward a necessity and a challenge to specify and realize model transformation as well as to ensure the correctness of transformations. This paper proposes an OCL-based framework for model transformations. The formal foundation of the framework is the integration of Triple Graph Grammars and the Object Constraint Language (OCL). The OCL-based transformation framework offers an on-the-fly verification of model transformations and means for transformation quality assurance.


2007 ◽  
Vol 6 (9) ◽  
pp. 253 ◽  
Author(s):  
Carsten Lohmann ◽  
Joel Greenyer ◽  
Juanjuan Jiang ◽  
Tarja Systä

Author(s):  
FRANK HERMANN ◽  
HARTMUT EHRIG ◽  
ULRIKE GOLAS ◽  
FERNANDO OREJAS

Triple graph grammars (TGGs) are a well-established concept for the specification and execution of bidirectional model transformations within model driven software engineering. Their main advantage is an automatic generation of operational rules for forward and backward model transformations, which simplifies specification and enhances usability as well as consistency. In this paper we present several important results for analysing model transformations based on the formal categorical foundation of TGGs within the framework of attributed graph transformation systems.Our first main result shows that the crucial properties of correctness and completeness are ensured for model transformations. In order to analyse functional behaviour, we generate a new kind of operational rule, called aforward translation rule. We apply existing results for the analysis of local confluence for attributed graph transformation systems. As additional main results, we provide sufficient criteria for the verification of functional behaviour as well as a necessary and sufficient condition for strong functional behaviour. In fact, these conditions imply polynomial complexity for the execution of the model transformation. We also analyse information and complete information preservation of model transformations, that is, whether a source model can be reconstructed (uniquely) from the target model computed by the model transformation. We illustrate the results for the well-known model transformation example from class diagrams to relational database models.


Author(s):  
Nils Weidmann ◽  
Anthony Anjorin

AbstractIn the field of Model-Driven Engineering, Triple Graph Grammars (TGGs) play an important role as a rule-based means of implementing consistency management. From a declarative specification of a consistency relation, several operations including forward and backward transformations, (concurrent) synchronisation, and consistency checks can be automatically derived. For TGGs to be applicable in realistic application scenarios, expressiveness in terms of supported language features is very important. A TGG tool is schema compliant if it can take domain constraints, such as multiplicity constraints in a meta-model, into account when performing consistency management tasks. To guarantee schema compliance, most TGG tools allow application conditions to be attached as necessary to relevant rules. This strategy is problematic for at least two reasons: First, ensuring compliance to a sufficiently expressive schema for all previously mentioned derived operations is still an open challenge; to the best of our knowledge, all existing TGG tools only support a very restricted subset of application conditions. Second, it is conceptually demanding for the user to indirectly specify domain constraints as application conditions, especially because this has to be completely revisited every time the TGG or domain constraint is changed. While domain constraints can in theory be automatically transformed to obtain the required set of application conditions, this has only been successfully transferred to TGGs for a very limited subset of domain constraints. To address these limitations, this paper proposes a search-based strategy for achieving schema compliance. We show that all correctness and completeness properties, previously proven in a setting without domain constraints, still hold when schema compliance is to be additionally guaranteed. An implementation and experimental evaluation are provided to support our claim of practical applicability.


Sign in / Sign up

Export Citation Format

Share Document