Improved Manipulation Detection with Convolutional Neural Network for JPEG Images

Author(s):  
Huajian Liu ◽  
Martin Steinebach ◽  
Kathrin Schölei

This paper provides a platform to investigate and explore method of ‘partial decoding of JPEG images’ for image classification using Convolutional Neural Network (CNN). The inference is targeting to run on computer system with x86 CPU architecture. We aimed to improve the inference speed of classification by just using part of the compressed domain image information for prediction. We will extract and use the ‘Discrete Cosine Transform’ (DCT) coefficients from compressed domain images to train our models. The trained models are then converted into OpenVINO Intermediate Representation (IR) format for optimization. During inference stage, full decoding is not required as our model only need DCT coefficients which are presented in the process of image partial decoding. Our customized DCT model are able to achieve up to 90% validation and testing accuracy with great competence towards the conventional RGB model. We can also obtain up to 2x times inference speed boost while performing inference on CPU in compressed domain compared with spatial domain employing OpenVINO inference engine.


2019 ◽  
Vol 129 ◽  
pp. 156-168 ◽  
Author(s):  
L. Minh Dang ◽  
Syed Ibrahim Hassan ◽  
Suhyeon Im ◽  
Hyeonjoon Moon

2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document