scholarly journals Oblivious Resampling Oracles and Parallel Algorithms for the Lopsided Lovász Local Lemma

2020 ◽  
Vol 17 (1) ◽  
pp. 1-32
Author(s):  
David G. Harris
10.37236/2319 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Jakub Przybyło ◽  
Mariusz Woźniak

Let $c:E(G)\rightarrow [k]$ be  a colouring, not necessarily proper, of edges of a graph $G$. For a vertex $v\in V$, let $\overline{c}(v)=(a_1,\ldots,a_k)$, where $ a_i =|\{u:uv\in E(G),\;c(uv)=i\}|$, for $i\in [k].$ If we re-order the sequence $\overline{c}(v)$ non-decreasingly, we obtain a sequence $c^*(v)=(d_1,\ldots,d_k)$, called a palette of a vertex $v$. This can be viewed as the most comprehensive information about colours incident with $v$ which can be delivered by a person who is unable to name colours but distinguishes one from another. The smallest $k$ such that $c^*$ is a proper colouring of vertices of $G$ is called the colour-blind index of a graph $G$, and is denoted by dal$(G)$. We conjecture that there is a constant $K$ such that dal$(G)\leq K$ for every graph $G$ for which the parameter is well defined. As our main result we prove that $K\leq 6$ for regular graphs of sufficiently large degree, and for irregular graphs with $\delta (G)$ and $\Delta(G)$ satisfying certain conditions. The proofs are based on the Lopsided Lovász Local Lemma. We also show that $K=3$ for all regular bipartite graphs, and for complete graphs of order $n\geq 8$.


Author(s):  
Ioannis Giotis ◽  
Lefteris Kirousis ◽  
Kostas I. Psaromiligkos ◽  
Dimitrios M. Thilikos

2019 ◽  
Vol 66 (3) ◽  
pp. 1-31 ◽  
Author(s):  
Heng Guo ◽  
Mark Jerrum ◽  
Jingcheng Liu

Sign in / Sign up

Export Citation Format

Share Document