comprehensive information
Recently Published Documents





2022 ◽  
Robert Fletcher

Brown Seaweeds (Phaeophyceae) of Britain and Ireland provides the first complete, up-to-date, detailed illustrated guide and keys to the nearly 200 species of brown algae present around the coasts of Britain and Ireland. It is the culmination of over 30 years of field and laboratory studies by the author. Following an exhaustive introduction that covers the biology and ecology of brown seaweeds, a checklist of species is set out, followed by clear and user-friendly keys to the genera. Particular attention is then paid to providing detailed illustrations, and the volume holds more than 300 compound plates of line drawings and photographs in its extensive taxonomic treatment. Comprehensive information is given on the geographical and seasonal distributions, synonymy, morphology, anatomy, cytology, reproduction, life histories, taxonomy, systematics and bibliographic material pertaining to each species. Notably, this flora offers a much fuller consideration of many of the lesser known, more cryptic microscopic brown algae than previously available. Further, the book also contains the results of much original research undertaken by the author. This will surely remain a standard reference work on brown seaweeds for many years to come – an indispensable research tool and field guide for phycologists and students throughout the North Atlantic region and beyond.

2022 ◽  
Vol 17 (s1) ◽  
Agung Syetiawan ◽  
Mira Harimurti ◽  
Yosef Prihanto

With 25% confirmed cases of the country’s total number of coronavirus disease 2019 (COVID-19) on 31 January 2021, Jakarta has the highest confirmed cases of in Indonesia. The city holds a significant role as the centre of government and national economic activity for which pandemic have had a huge impact. Spatiotemporal analysis was employed to identify the current condition of disease transmission and to provide comprehensive information on the COVID-19 outbreak in Jakarta. We applied space-time analysis to visualise the pattern of COVID-19 hotspots in each time series. We also mapped area capacity of the referral hospitals covering the entire area of Jakarta to understand the hospital service range. This research was conducted in 4 stages: i) disease mapping; ii) spatial autocorrelation analysis; iii) space-time pattern analysis; and iv) areal capacity mapping. The analysis resulted in 144 sub-districts categorised as high vulnerability. Autocorrelation studies by Moran’s I identified cluster patterns and the emerging hotspot results indicated successful interventions as the number of hotspots fell in the first period of social restrictions. The results presented should be beneficial for policy makers.

2022 ◽  
Vol 12 ◽  
Furong Zhong ◽  
Yang Chen ◽  
Jia Chen ◽  
Hailang Liao ◽  
Yirou Li ◽  

Jatrorrhizine, an isoquinoline alkaloid, is a bioactive metabolite in common medicinal plants, such as Berberis vernae Schneid., Tinospora sagittata (Oliv.) Gagnep. and Coptis chinensis Franch. These plants have been used for centuries in traditional medicine for their wide-ranging pharmacological properties. This review emphasizes the latest and comprehensive information on the sources, pharmacology, pharmacokinetics and toxicity of jatrorrhizine. Studies on this alkaloid were collected from scientific internet databases, including the Web of Science, PubMed, ScienceDirect, Google Scholar, Elsevier, Springer, Wiley Online Library and Europe PMC and CNKI, using a combination of keywords involving “jatrorrhizine”, “sources”, “pharmacology,” “pharmacokinetics,” and “toxicology”. Jatrorrhizine exhibits anti-diabetic, antimicrobial, antiprotozoal, anticancer, anti-obesity and hypolipidemic properties, along with central nervous system activities and other beneficial activity. Studies of jatrorrhizine have laid the foundation for its application to the treatment of various diseases, but some issues still exist. Further investigations might emphasize 1) specific curative mechanisms of jatrorrhizine and clinical utility, 2) application prospect in the treatment of metabolic disorders, 3) comprehensive investigations of the toxicity mechanisms and 4) interactions of jatrorrhizine with other pharmaceuticals and development of derivatives.

2022 ◽  
Vol 27 (1) ◽  
Zahra Niknam ◽  
Ameneh Jafari ◽  
Ali Golchin ◽  
Fahima Danesh Pouya ◽  
Mohadeseh Nemati ◽  

AbstractSARS-CoV-2, a novel coronavirus, is the agent responsible for the COVID-19 pandemic and is a major public health concern nowadays. The rapid and global spread of this coronavirus leads to an increase in hospitalizations and thousands of deaths in many countries. To date, great efforts have been made worldwide for the efficient management of this crisis, but there is still no effective and specific treatment for COVID-19. The primary therapies to treat the disease are antivirals, anti-inflammatories and respiratory therapy. In addition, antibody therapies currently have been a many active and essential part of SARS-CoV-2 infection treatment. Ongoing trials are proposed different therapeutic options including various drugs, convalescent plasma therapy, monoclonal antibodies, immunoglobulin therapy, and cell therapy. The present study summarized current evidence of these therapeutic approaches to assess their efficacy and safety for COVID-19 treatment. We tried to provide comprehensive information about the available potential therapeutic approaches against COVID-19 to support researchers and physicians in any current and future progress in treating COVID-19 patients.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 500
Aditya Pandey ◽  
Pramod Pandey ◽  
Jaya Shankar Tumuluru

This review uses a more holistic approach to provide comprehensive information and up-to-date knowledge on solar energy development in India and scientific and technological advancement. This review describes the types of solar photovoltaic (PV) systems, existing solar technologies, and the structure of PV systems. Substantial emphasis has been given to understanding the potential impacts of COVID-19 on the solar energy installed capacity. In addition, we evaluated the prospects of solar energy and the revival of growth in solar energy installation post-COVID-19. Further, we described the challenges caused by transitions and cloud enhancement on smaller and larger PV systems on the solar power amended grid-system. While the review is focused on evaluating the solar energy growth in India, we used a broader approach to compare the existing solar technologies available across the world. The need for recycling waste from solar energy systems has been emphasized. Improved PV cell efficiencies and trends in cost reductions have been provided to understand the overall growth of solar-based energy production. Further, to understand the existing technologies used in PV cell production, we have reviewed monocrystalline and polycrystalline cell structures and their limitations. In terms of solar energy production and the application of various solar technologies, we have used the latest available literature to cover stand-alone PV and on-grid PV systems. More than 5000 trillion kWh/year solar energy incidents over India are estimated, with most parts receiving 4–7 kWh/m2. Currently, energy consumption in India is about 1.13 trillion kWh/year, and production is about 1.38 trillion kWh/year, which indicates production capacities are slightly higher than actual demand. Out of a total of 100 GW of installed renewable energy capacity, the existing solar capacity in India is about 40 GW. Over the past ten years, the solar energy production capacity has increased by over 24,000%. By 2030, the total renewable energy capacity is expected to be 450 GW, and solar energy is likely to play a crucial role (over 60%). In the wake of the increased emphasis on solar energy and the substantial impacts of COVID-19 on solar energy installations, this review provides the most updated and comprehensive information on the current solar energy systems, available technologies, growth potential, prospect of solar energy, and need for growth in the solar waste recycling industry. We expect the analysis and evaluation of technologies provided here will add to the existing literature to benefit stakeholders, scientists, and policymakers.

2022 ◽  
Vol 11 (1) ◽  
pp. 35
Jiří Krejčí ◽  
Jiří Cajthaml

The article deals with a comprehensive information system of the historic Vltava River valley. This system contains a number of resources, which are described. For old maps, which are the basis of the whole system, their georeferencing and potential problems in creating seamless mosaics are described. Other sources of data include old photographs, which are localized and stored in the system, along with the definition point of the place from which they were probably taken. The vectorization of data is described, not only for area features used for the analysis of land-use changes, but also for the vectorization of contours. These were vectorized from old maps and are substantial for the creation of historic DEM. Vectorized footprints of buildings and vectors of other functional areas subsequently serve as a basis for the procedural modeling of the virtual 3D landscape. The creation of such a complex and broad information system cannot be described in one article. The aim of this text is to draw attention to a possible approach to the presentation and visualization of the historic landscape, along with links to important documents.

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 354
Huaguo Chen ◽  
Cheuk Lun Chow ◽  
Denvid Lau

Aluminum windows are crucial components of building envelopes since they connect the indoor space to the external environment. Various external causes degrade or harm the functioning of aluminum windows. In this regard, inspecting the performance of aluminum windows is a necessary task to keep buildings healthy. This review illustrates the deterioration mechanisms of aluminum windows under various environmental conditions with an intention to provide comprehensive information for developing damage protection and inspection technologies. The illustrations reveal that moisture and chloride ions have the most detrimental effect on deteriorating aluminum windows in the long run, while mechanical loads can damage aluminum windows in a sudden manner. In addition, multiple advanced inspection techniques potential to benefit assessing aluminum window health state are discussed in order to help tackle the efficiency problem of traditional visual inspection. The comparison among those techniques demonstrates that infrared thermography can help acquire a preliminary defect profile of inspected windows, whereas ultrasonic phased arrays technology demonstrates a high level of competency in analyzing comprehensive defect information. This review also discusses the challenges in the scarcity of nanoscale corrosion information for insightful understandings of aluminum window corrosion and reliable window inspection tools for lifespan prediction. In this regard, molecular dynamics simulation and artificial intelligence technology are recommended as promising tools for better revealing the deterioration mechanisms and advancing inspection techniques, respectively, for future directions. It is envisioned that this paper will help upgrade the aluminum window inspection scheme and contribute to driving the construction of intelligent and safe cities.

2022 ◽  
Vol 12 ◽  
Xiaorui Han ◽  
Wuteng Cao ◽  
Lei Wu ◽  
Changhong Liang

BackgroundThe immune microenvironment of tumors provides information on prognosis and prediction. A prior validation of the immunoscore for breast cancer (ISBC) was made on the basis of a systematic assessment of immune landscapes extrapolated from a large number of neoplastic transcripts. Our goal was to develop a non-invasive radiomics-based ISBC predictive factor.MethodsImmunocell fractions of 22 different categories were evaluated using CIBERSORT on the basis of a large, open breast cancer cohort derived from comprehensive information on gene expression. The ISBC was constructed using the LASSO Cox regression model derived from the Immunocell type scores, with 479 quantified features in the intratumoral and peritumoral regions as observed from DCE-MRI. A radiomics signature [radiomics ImmunoScore (RIS)] was developed for the prediction of ISBC using a random forest machine-learning algorithm, and we further evaluated its relationship with prognosis.ResultsAn ISBC consisting of seven different immune cells was established through the use of a LASSO model. Multivariate analyses showed that the ISBC was an independent risk factor in prognosis (HR=2.42, with a 95% CI of 1.49–3.93; P<0.01). A radiomic signature of 21 features of the ISBC was then exploited and validated (the areas under the curve [AUC] were 0.899 and 0.815). We uncovered statistical associations between the RIS signature with recurrence-free and overall survival rates (both P<0.05).ConclusionsThe RIS is a valuable instrument with which to assess the immunoscore, and offers important implications for the prognosis of breast cancer.

2022 ◽  
pp. 273-287
Zouheir Trabelsi ◽  
Margaret McCoey ◽  
Yang Wang

This chapter identifies and discusses the learning outcomes to be achieved because of hands-on lab exercises using ethical hacking. It discusses the ethical implications associated with including such labs in the information security curriculum. The discussion is informed by analyses of log data on student malicious activities, and the results of student surveys. The examination of student behavior after acquiring hands-on offensive skills shows that there is potentially a high risk of using these skills in an inappropriate and illegal manner. While acknowledging the risk and the ethical problems associated with teaching ethical hacking, it strongly recommends that information security curricula should opt for a teaching approach that offers students both offensive hands-on lab exercises coupled with ethical practices related to the techniques. The authors propose steps to offer a comprehensive information security program while at the same time minimizing the risk of inappropriate student behavior and reducing institutional liability in that respect and increasing the ethical views and practices related to ethical hacking.

2022 ◽  
pp. 65-93
Amitsinh Vijaysinh Mangrola ◽  
Rajesh Kanjibhai Patel ◽  
Pravin Dudhagara ◽  
Himani Gandhi ◽  
Anjana Ghelani ◽  

Microorganisms are the diverse living things present on the Earth. India has numerous unique thermal habitats that comprise several diversity hotspots, such as hot springs, deep oceanic hydrothermal openings, anaerobic biodigesters. The existence of life at high temperatures is quite attractive. At both ends of the temperature range suited with life, only microorganisms can grow and survive. Thermophiles are a typical extremophilic microbes capable of existence in high temperature environments. At such high temperature, the ordinary cellular functions adversely affected for mesophiles. The thermophiles effectively manage instability of the plasma membrane, inactivation of enzymes instability of DNA, as well as other hostile physiological variations at such an elevated temperature. Heat shock proteins (Hsps) have established the most attention in thermophiles under stress condition, which is well described in this chapter. This chapter offers comprehensive information about thermophiles, physiology, metabolism, enzymes of metabolic pathways, and various adaptation mechanisms.

Sign in / Sign up

Export Citation Format

Share Document