ATJ-Net: Auto-Table-Join Network for Automatic Learning on Relational Databases

Author(s):  
Jinze Bai ◽  
Jialin Wang ◽  
Zhao Li ◽  
Donghui Ding ◽  
Ji Zhang ◽  
...  
2015 ◽  
Author(s):  
Aliaksei Severyn ◽  
Alessandro Moschitti
Keyword(s):  

2011 ◽  
Vol 34 (2) ◽  
pp. 291-303 ◽  
Author(s):  
Li YAN ◽  
Zong-Min MA ◽  
Jian LIU ◽  
Fu ZHANG

Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1778
Author(s):  
Binhao He ◽  
Meiting Xue ◽  
Shubiao Liu ◽  
Wei Luo

As one of the most important operations in relational databases, the join is data-intensive and time-consuming. Thus, offloading this operation using field-programmable gate arrays (FPGAs) has attracted much interest and has been broadly researched in recent years. However, the available SRAM-based join architectures are often resource-intensive, power-consuming, or low-throughput. Besides, a lower match rate does not lead to a shorter operation time. To address these issues, a Bloom filter (BF)-based parallel join architecture is presented in this paper. This architecture first leverages the BF to discard the tuples that are not in the join result and classifies the remaining tuples into different channels. Second, a binary search tree is used to reduce the number of comparisons. The proposed method was implemented on a Xilinx FPGA, and the experimental results show that under a match rate of 50%, our architecture achieved a high join throughput of 145.8 million tuples per second and a maximum acceleration factor of 2.3 compared to the existing SRAM-based join architectures.


1991 ◽  
Vol 14 (3) ◽  
pp. 367-385
Author(s):  
Andrzej Jankowski ◽  
Zbigniew Michalewicz

A number of approaches have been taken to represent compound, structured values in relational databases. We review a few such approaches and discuss a new approach, in which every set is represented as a Boolean term. We show that this approach generalizes the other approaches, leading to more flexible representation. Boolean term representation seems to be appropriate in handling incomplete information: this approach generalizes some other approaches (e.g. null value mark, null variables, etc). We consider definitions of algebraic operations on such sets, like join, union, selection, etc. Moreover, we introduce a measure of computational complexity of these operations.


Sign in / Sign up

Export Citation Format

Share Document