scholarly journals On continuation-passing transformations and expected cost analysis

2021 ◽  
Vol 5 (ICFP) ◽  
pp. 1-30
Author(s):  
Martin Avanzini ◽  
Gilles Barthe ◽  
Ugo Dal Lago

We define a continuation-passing style (CPS) translation for a typed λ-calculus with probabilistic choice, unbounded recursion, and a tick operator — for modeling cost. The target language is a (non-probabilistic) λ-calculus, enriched with a type of extended positive reals and a fixpoint operator. We then show that applying the CPS transform of an expression M to the continuation λ v . 0 yields the expected cost of M . We also introduce a formal system for higher-order logic, called EHOL, prove it sound, and show it can derive tight upper bounds on the expected cost of classic examples, including Coupon Collector and Random Walk. Moreover, we relate our translation to Kaminski et al.’s ert-calculus, showing that the latter can be recovered by applying our CPS translation to (a generalization of) the classic embedding of imperative programs into λ-calculus. Finally, we prove that the CPS transform of an expression can also be used to compute pre-expectations and to reason about almost sure termination.




Author(s):  
Peter Fritz ◽  
Harvey Lederman ◽  
Gabriel Uzquiano

AbstractAccording to the structured theory of propositions, if two sentences express the same proposition, then they have the same syntactic structure, with corresponding syntactic constituents expressing the same entities. A number of philosophers have recently focused attention on a powerful argument against this theory, based on a result by Bertrand Russell, which shows that the theory of structured propositions is inconsistent in higher order-logic. This paper explores a response to this argument, which involves restricting the scope of the claim that propositions are structured, so that it does not hold for all propositions whatsoever, but only for those which are expressible using closed sentences of a given formal language. We call this restricted principle Closed Structure, and show that it is consistent in classical higher-order logic. As a schematic principle, the strength of Closed Structure is dependent on the chosen language. For its consistency to be philosophically significant, it also needs to be consistent in every extension of the language which the theorist of structured propositions is apt to accept. But, we go on to show, Closed Structure is in fact inconsistent in a very natural extension of the standard language of higher-order logic, which adds resources for plural talk of propositions. We conclude that this particular strategy of restricting the scope of the claim that propositions are structured is not a compelling response to the argument based on Russell’s result, though we note that for some applications, for instance to propositional attitudes, a restricted thesis in the vicinity may hold some promise.



2008 ◽  
Vol 21 (4) ◽  
pp. 377-409 ◽  
Author(s):  
Scott Owens ◽  
Konrad Slind


2020 ◽  
Vol 4 (ICFP) ◽  
pp. 1-31
Author(s):  
Di Wang ◽  
David M. Kahn ◽  
Jan Hoffmann
Keyword(s):  




Author(s):  
Crispin Wright

The paper explores the alleged connection between indefinite extensibility and the classic paradoxes of Russell, Burali-Forti, and Cantor. It is argued that while indefinite extensibility is not per se a source of paradox, there is a degenerate subspecies—reflexive indefinite extensibility—which is. The result is a threefold distinction in the roles played by indefinite extensibility in generating paradoxes for the notions of ordinal number, cardinal number, and set respectively. Ordinal number, intuitively understood, is a reflexively indefinitely extensible concept. Cardinal number is not. And Set becomes so only in the setting of impredicative higher-order logic—so that Frege’s Basic Law V is guilty at worst of partnership in crime, rather than the sole offender.



Sign in / Sign up

Export Citation Format

Share Document