Multi-view 3D Smooth Human Pose Estimation based on Heatmap Filtering and Spatio-temporal Information

2021 ◽  
Author(s):  
Zehai Niu ◽  
Ke Lu ◽  
Jian Xue ◽  
Haifeng Ma ◽  
Runchen Wei
2020 ◽  
Vol 34 (07) ◽  
pp. 10631-10638
Author(s):  
Yu Cheng ◽  
Bo Yang ◽  
Bo Wang ◽  
Robby T. Tan

Estimating 3D poses from a monocular video is still a challenging task, despite the significant progress that has been made in the recent years. Generally, the performance of existing methods drops when the target person is too small/large, or the motion is too fast/slow relative to the scale and speed of the training data. Moreover, to our knowledge, many of these methods are not designed or trained under severe occlusion explicitly, making their performance on handling occlusion compromised. Addressing these problems, we introduce a spatio-temporal network for robust 3D human pose estimation. As humans in videos may appear in different scales and have various motion speeds, we apply multi-scale spatial features for 2D joints or keypoints prediction in each individual frame, and multi-stride temporal convolutional networks (TCNs) to estimate 3D joints or keypoints. Furthermore, we design a spatio-temporal discriminator based on body structures as well as limb motions to assess whether the predicted pose forms a valid pose and a valid movement. During training, we explicitly mask out some keypoints to simulate various occlusion cases, from minor to severe occlusion, so that our network can learn better and becomes robust to various degrees of occlusion. As there are limited 3D ground truth data, we further utilize 2D video data to inject a semi-supervised learning capability to our network. Experiments on public data sets validate the effectiveness of our method, and our ablation studies show the strengths of our network's individual submodules.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 95
Author(s):  
Limao Tian ◽  
Xina Cheng ◽  
Masaaki Honda ◽  
Takeshi Ikenaga

Jump analysis in figure skating is important. Recovering the 3D pose of a figure skater has become increasingly important. However, issues such as restrictions from an athlete’s clothing, self-occlusion, abnormal pose and so on will result in poor results. This paper proposes a multi-technology correction framework to obtain a 3D human pose. The framework consists of three key components: temporal information-based mutational point correction, multi-perspective-based reconstructed point selection and trajectory smoothness-based inaccurate point correction. Firstly, temporal information is used to correct the mutational points at the 2D level. Secondly, a multi-perspective is used to select the correct spatial points at the 3D level. Thirdly, trajectory smoothness is used to correct inaccuracies at the 3D level. This work will serve the purpose of displaying the 3D animated pose of a figure skater. The quality grade of the result rate on the test sequences is 87.25%.


2011 ◽  
Vol 33 (6) ◽  
pp. 1413-1419
Author(s):  
Yan-chao Su ◽  
Hai-zhou Ai ◽  
Shi-hong Lao

Author(s):  
Jinbao Wang ◽  
Shujie Tan ◽  
Xiantong Zhen ◽  
Shuo Xu ◽  
Feng Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document