Urban Traffic Dynamics Prediction—A Continuous Spatial-temporal Meta-learning Approach

2022 ◽  
Vol 13 (2) ◽  
pp. 1-19
Yingxue Zhang ◽  
Yanhua Li ◽  
Xun Zhou ◽  
Jun Luo ◽  
Zhi-Li Zhang

Urban traffic status (e.g., traffic speed and volume) is highly dynamic in nature, namely, varying across space and evolving over time. Thus, predicting such traffic dynamics is of great importance to urban development and transportation management. However, it is very challenging to solve this problem due to spatial-temporal dependencies and traffic uncertainties. In this article, we solve the traffic dynamics prediction problem from Bayesian meta-learning perspective and propose a novel continuous spatial-temporal meta-learner (cST-ML), which is trained on a distribution of traffic prediction tasks segmented by historical traffic data with the goal of learning a strategy that can be quickly adapted to related but unseen traffic prediction tasks. cST-ML tackles the traffic dynamics prediction challenges by advancing the Bayesian black-box meta-learning framework through the following new points: (1) cST-ML captures the dynamics of traffic prediction tasks using variational inference, and to better capture the temporal uncertainties within tasks, cST-ML performs as a rolling window within each task; (2) cST-ML has novel designs in architecture, where CNN and LSTM are embedded to capture the spatial-temporal dependencies between traffic status and traffic-related features; (3) novel training and testing algorithms for cST-ML are designed. We also conduct experiments on two real-world traffic datasets (taxi inflow and traffic speed) to evaluate our proposed cST-ML. The experimental results verify that cST-ML can significantly improve the urban traffic prediction performance and outperform all baseline models especially when obvious traffic dynamics and temporal uncertainties are presented.

Zheyi Pan ◽  
Wentao Zhang ◽  
Yuxuan Liang ◽  
Weinan Zhang ◽  
Yong Yu ◽  

2021 ◽  
pp. 1-1
Qi Liu ◽  
Xinyu Zhang ◽  
Yongxiang Liu ◽  
Kai Huo ◽  
Weidong Jiang ◽  

Weida Zhong ◽  
Qiuling Suo ◽  
Abhishek Gupta ◽  
Xiaowei Jia ◽  
Chunming Qiao ◽  

With the popularity of smartphones, large-scale road sensing data is being collected to perform traffic prediction, which is an important task in modern society. Due to the nature of the roving sensors on smartphones, the collected traffic data which is in the form of multivariate time series, is often temporally sparse and unevenly distributed across regions. Moreover, different regions can have different traffic patterns, which makes it challenging to adapt models learned from regions with sufficient training data to target regions. Given that many regions may have very sparse data, it is also impossible to build individual models for each region separately. In this paper, we propose a meta-learning based framework named MetaTP to overcome these challenges. MetaTP has two key parts, i.e., basic traffic prediction network (base model) and meta-knowledge transfer. In base model, a two-layer interpolation network is employed to map original time series onto uniformly-spaced reference time points, so that temporal prediction can be effectively performed in the reference space. The meta-learning framework is employed to transfer knowledge from source regions with a large amount of data to target regions with a few data examples via fast adaptation, in order to improve model generalizability on target regions. Moreover, we use two memory networks to capture the global patterns of spatial and temporal information across regions. We evaluate the proposed framework on two real-world datasets, and experimental results show the effectiveness of the proposed framework.

Sign in / Sign up

Export Citation Format

Share Document