ACM Transactions on Intelligent Systems and Technology
Latest Publications


TOTAL DOCUMENTS

801
(FIVE YEARS 245)

H-INDEX

48
(FIVE YEARS 11)

Published By Association For Computing Machinery

2157-6904

2022 ◽  
Vol 13 (1) ◽  
pp. 1-25
Author(s):  
Yuandong Wang ◽  
Hongzhi Yin ◽  
Tong Chen ◽  
Chunyang Liu ◽  
Ben Wang ◽  
...  

In recent years, ride-hailing services have been increasingly prevalent, as they provide huge convenience for passengers. As a fundamental problem, the timely prediction of passenger demands in different regions is vital for effective traffic flow control and route planning. As both spatial and temporal patterns are indispensable passenger demand prediction, relevant research has evolved from pure time series to graph-structured data for modeling historical passenger demand data, where a snapshot graph is constructed for each time slot by connecting region nodes via different relational edges (origin-destination relationship, geographical distance, etc.). Consequently, the spatiotemporal passenger demand records naturally carry dynamic patterns in the constructed graphs, where the edges also encode important information about the directions and volume (i.e., weights) of passenger demands between two connected regions. aspects in the graph-structure data. representation for DDW is the key to solve the prediction problem. However, existing graph-based solutions fail to simultaneously consider those three crucial aspects of dynamic, directed, and weighted graphs, leading to limited expressiveness when learning graph representations for passenger demand prediction. Therefore, we propose a novel spatiotemporal graph attention network, namely Gallat ( G raph prediction with all at tention) as a solution. In Gallat, by comprehensively incorporating those three intrinsic properties of dynamic directed and weighted graphs, we build three attention layers to fully capture the spatiotemporal dependencies among different regions across all historical time slots. Moreover, the model employs a subtask to conduct pretraining so that it can obtain accurate results more quickly. We evaluate the proposed model on real-world datasets, and our experimental results demonstrate that Gallat outperforms the state-of-the-art approaches.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-18
Author(s):  
Xin Bi ◽  
Chao Zhang ◽  
Fangtong Wang ◽  
Zhixun Liu ◽  
Xiangguo Zhao ◽  
...  

As a variant task of time-series segmentation, trajectory segmentation is a key task in the applications of transportation pattern recognition and traffic analysis. However, segmenting trajectory is faced with challenges of implicit patterns and sparse results. Although deep neural networks have tremendous advantages in terms of high-level feature learning performance, deploying as a blackbox seriously limits the real-world applications. Providing explainable segmentations has significance for result evaluation and decision making. Thus, in this article, we address trajectory segmentation by proposing a Bayesian Encoder-Decoder Network (BED-Net) to provide accurate detection with explainability and references for the following active-learning procedures. BED-Net consists of a segmentation module based on Monte Carlo dropout and an explanation module based on uncertainty learning that provides results evaluation and visualization. Experimental results on both benchmark and real-world datasets indicate that BED-Net outperforms the rival methods and offers excellent explainability in the applications of trajectory segmentation.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-16
Author(s):  
Yanliang Zhu ◽  
Dongchun Ren ◽  
Yi Xu ◽  
Deheng Qian ◽  
Mingyu Fan ◽  
...  

Trajectory prediction of multiple agents in a crowded scene is an essential component in many applications, including intelligent monitoring, autonomous robotics, and self-driving cars. Accurate agent trajectory prediction remains a significant challenge because of the complex dynamic interactions among the agents and between them and the surrounding scene. To address the challenge, we propose a decoupled attention-based spatial-temporal modeling strategy in the proposed trajectory prediction method. The past and current interactions among agents are dynamically and adaptively summarized by two separate attention-based networks and have proven powerful in improving the prediction accuracy. Moreover, it is optional in the proposed method to make use of the road map and the plan of the ego-agent for scene-compliant and accurate predictions. The road map feature is efficiently extracted by a convolutional neural network, and the features of the ego-agent’s plan is extracted by a gated recurrent network with an attention module based on the temporal characteristic. Experiments on benchmark trajectory prediction datasets demonstrate that the proposed method is effective when the ego-agent plan and the the surrounding scene information are provided and achieves state-of-the-art performance with only the observed trajectories.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-25
Author(s):  
Fan Zhou ◽  
Pengyu Wang ◽  
Xovee Xu ◽  
Wenxin Tai ◽  
Goce Trajcevski

The main objective of Personalized Tour Recommendation (PTR) is to generate a sequence of point-of-interest (POIs) for a particular tourist, according to the user-specific constraints such as duration time, start and end points, the number of attractions planned to visit, and so on. Previous PTR solutions are based on either heuristics for solving the orienteering problem to maximize a global reward with a specified budget or approaches attempting to learn user visiting preferences and transition patterns with the stochastic process or recurrent neural networks. However, existing learning methodologies rely on historical trips to train the model and use the next visited POI as the supervised signal, which may not fully capture the coherence of preferences and thus recommend similar trips to different users, primarily due to the data sparsity problem and long-tailed distribution of POI popularity. This work presents a novel tour recommendation model by distilling knowledge and supervision signals from the trips in a self-supervised manner. We propose Contrastive Trajectory Learning for Tour Recommendation (CTLTR), which utilizes the intrinsic POI dependencies and traveling intent to discover extra knowledge and augments the sparse data via pre-training auxiliary self-supervised objectives. CTLTR provides a principled way to characterize the inherent data correlations while tackling the implicit feedback and weak supervision problems by learning robust representations applicable for tour planning. We introduce a hierarchical recurrent encoder-decoder to identify tourists’ intentions and use the contrastive loss to discover subsequence semantics and their sequential patterns through maximizing the mutual information. Additionally, we observe that a data augmentation step as the preliminary of contrastive learning can solve the overfitting issue resulting from data sparsity. We conduct extensive experiments on a range of real-world datasets and demonstrate that our model can significantly improve the recommendation performance over the state-of-the-art baselines in terms of both recommendation accuracy and visiting orders.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-23
Author(s):  
Christoffer Löffler ◽  
Luca Reeb ◽  
Daniel Dzibela ◽  
Robert Marzilger ◽  
Nicolas Witt ◽  
...  

This work proposes metric learning for fast similarity-based scene retrieval of unstructured ensembles of trajectory data from large databases. We present a novel representation learning approach using Siamese Metric Learning that approximates a distance preserving low-dimensional representation and that learns to estimate reasonable solutions to the assignment problem. To this end, we employ a Temporal Convolutional Network architecture that we extend with a gating mechanism to enable learning from sparse data, leading to solutions to the assignment problem exhibiting varying degrees of sparsity. Our experimental results on professional soccer tracking data provides insights on learned features and embeddings, as well as on generalization, sensitivity, and network architectural considerations. Our low approximation errors for learned representations and the interactive performance with retrieval times several magnitudes smaller shows that we outperform previous state of the art.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-21
Author(s):  
Hui Luo ◽  
Zhifeng Bao ◽  
Gao Cong ◽  
J. Shane Culpepper ◽  
Nguyen Lu Dang Khoa

Traffic bottlenecks are a set of road segments that have an unacceptable level of traffic caused by a poor balance between road capacity and traffic volume. A huge volume of trajectory data which captures realtime traffic conditions in road networks provides promising new opportunities to identify the traffic bottlenecks. In this paper, we define this problem as trajectory-driven traffic bottleneck identification : Given a road network R , a trajectory database T , find a representative set of seed edges of size K of traffic bottlenecks that influence the highest number of road segments not in the seed set. We show that this problem is NP-hard and propose a framework to find the traffic bottlenecks as follows. First, a traffic spread model is defined which represents changes in traffic volume for each road segment over time. Then, the traffic diffusion probability between two connected segments and the residual ratio of traffic volume for each segment can be computed using historical trajectory data. We then propose two different algorithmic approaches to solve the problem. The first one is a best-first algorithm BF , with an approximation ratio of 1-1/ e . To further accelerate the identification process in larger datasets, we also propose a sampling-based greedy algorithm SG . Finally, comprehensive experiments using three different datasets compare and contrast various solutions, and provide insights into important efficiency and effectiveness trade-offs among the respective methods.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-20
Author(s):  
Zhe Jiang ◽  
Wenchong He ◽  
Marcus Stephen Kirby ◽  
Arpan Man Sainju ◽  
Shaowen Wang ◽  
...  

In recent years, deep learning has achieved tremendous success in image segmentation for computer vision applications. The performance of these models heavily relies on the availability of large-scale high-quality training labels (e.g., PASCAL VOC 2012). Unfortunately, such large-scale high-quality training data are often unavailable in many real-world spatial or spatiotemporal problems in earth science and remote sensing (e.g., mapping the nationwide river streams for water resource management). Although extensive efforts have been made to reduce the reliance on labeled data (e.g., semi-supervised or unsupervised learning, few-shot learning), the complex nature of geographic data such as spatial heterogeneity still requires sufficient training labels when transferring a pre-trained model from one region to another. On the other hand, it is often much easier to collect lower-quality training labels with imperfect alignment with earth imagery pixels (e.g., through interpreting coarse imagery by non-expert volunteers). However, directly training a deep neural network on imperfect labels with geometric annotation errors could significantly impact model performance. Existing research that overcomes imperfect training labels either focuses on errors in label class semantics or characterizes label location errors at the pixel level. These methods do not fully incorporate the geometric properties of label location errors in the vector representation. To fill the gap, this article proposes a weakly supervised learning framework to simultaneously update deep learning model parameters and infer hidden true vector label locations. Specifically, we model label location errors in the vector representation to partially reserve geometric properties (e.g., spatial contiguity within line segments). Evaluations on real-world datasets in the National Hydrography Dataset (NHD) refinement application illustrate that the proposed framework outperforms baseline methods in classification accuracy.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-18
Author(s):  
Meng Chen ◽  
Qingjie Liu ◽  
Weiming Huang ◽  
Teng Zhang ◽  
Yixuan Zuo ◽  
...  

Next location prediction is of great importance for many location-based applications and provides essential intelligence to various businesses. In previous studies, a common approach to next location prediction is to learn the sequential transitions with massive historical trajectories based on conditional probability. Nevertheless, due to the time and space complexity, these methods (e.g., Markov models) only utilize the just passed locations to predict next locations, neglecting earlier passed locations in the trajectory. In this work, we seek to enhance the prediction performance by incorporating the travel time from all the passed locations in the query trajectory to each candidate next location. To this end, we propose a novel prediction method, namely the Travel Time Difference Model, which exploits the difference between the shortest travel time and the actual travel time to predict next locations. Moreover, we integrate the Travel Time Difference Model with a Sequential and Temporal Predictor to yield a joint model. The joint prediction model integrates local sequential transitions, temporal regularity, and global travel time information in the trajectory for the next location prediction problem. We have conducted extensive experiments on two real-world datasets: the vehicle passage record data and the taxi trajectory data. The experimental results demonstrate significant improvements in prediction accuracy over baseline methods.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-20
Author(s):  
Wen-Cheng Chen ◽  
Wan-Lun Tsai ◽  
Huan-Hua Chang ◽  
Min-Chun Hu ◽  
Wei-Ta Chu

Tactic learning in virtual reality (VR) has been proven to be effective for basketball training. Endowed with the ability of generating virtual defenders in real time according to the movement of virtual offenders controlled by the user, a VR basketball training system can bring more immersive and realistic experiences for the trainee. In this article, an autoregressive generative model for instantly producing basketball defensive trajectory is introduced. We further focus on the issue of preserving the diversity of the generated trajectories. A differentiable sampling mechanism is adopted to learn the continuous Gaussian distribution of player position. Moreover, several heuristic loss functions based on the domain knowledge of basketball are designed to make the generated trajectories assemble real situations in basketball games. We compare the proposed method with the state-of-the-art works in terms of both objective and subjective manners. The objective manner compares the average position, velocity, and acceleration of the generated defensive trajectories with the real ones to evaluate the fidelity of the results. In addition, more high-level aspects such as the empty space for offender and the defensive pressure of the generated trajectory are also considered in the objective evaluation. As for the subjective manner, visual comparison questionnaires on the proposed and other methods are thoroughly conducted. The experimental results show that the proposed method can achieve better performance than previous basketball defensive trajectory generation works in terms of different evaluation metrics.


2022 ◽  
Vol 13 (1) ◽  
pp. 1-22
Author(s):  
Hongting Niu ◽  
Hengshu Zhu ◽  
Ying Sun ◽  
Xinjiang Lu ◽  
Jing Sun ◽  
...  

Recent years have witnessed the rapid development of car-hailing services, which provide a convenient approach for connecting passengers and local drivers using their personal vehicles. At the same time, the concern on passenger safety has gradually emerged and attracted more and more attention. While car-hailing service providers have made considerable efforts on developing real-time trajectory tracking systems and alarm mechanisms, most of them only focus on providing rescue-supporting information rather than preventing potential crimes. Recently, the newly available large-scale car-hailing order data have provided an unparalleled chance for researchers to explore the risky travel area and behavior of car-hailing services, which can be used for building an intelligent crime early warning system. To this end, in this article, we propose a Risky Area and Risky Behavior Evaluation System (RARBEs) based on the real-world car-hailing order data. In RARBEs, we first mine massive multi-source urban data and train an effective area risk prediction model, which estimates area risk at the urban block level. Then, we propose a transverse and longitudinal double detection method, which estimates behavior risk based on two aspects, including fraud trajectory recognition and fraud patterns mining. In particular, we creatively propose a bipartite graph-based algorithm to model the implicit relationship between areas and behaviors, which collaboratively adjusts area risk and behavior risk estimation based on random walk regularization. Finally, extensive experiments on multi-source real-world urban data clearly validate the effectiveness and efficiency of our system.


Sign in / Sign up

Export Citation Format

Share Document