Antenna Beam Optimization for Near-field Super-sparse Array Based on UAVs

2021 ◽  
Author(s):  
Zhang Yinan ◽  
Yu Guowen ◽  
Peng Shirui ◽  
Leng Yi ◽  
Wang Guangxue
Keyword(s):  
2014 ◽  
Vol 62 (4) ◽  
pp. 1716-1722 ◽  
Author(s):  
Borja Gonzalez-Valdes ◽  
Gregory Allan ◽  
Yolanda Rodriguez-Vaqueiro ◽  
Yuri Alvarez ◽  
Spiros Mantzavinos ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Touseef Hayat ◽  
Muhammad U. Afzal ◽  
Foez Ahmed ◽  
Shiyu Zhang ◽  
Karu P. Esselle ◽  
...  
Keyword(s):  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 203048-203057
Author(s):  
Yaxiang Wu ◽  
Bolin Jiang ◽  
Miao Zhang ◽  
Jiro Hirokawa ◽  
Qing Huo Liu

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2007 ◽  
Author(s):  
Stuart Gregson ◽  
John McCormick ◽  
Clive Parini

Sign in / Sign up

Export Citation Format

Share Document