scanning optical microscopy
Recently Published Documents


TOTAL DOCUMENTS

670
(FIVE YEARS 11)

H-INDEX

45
(FIVE YEARS 0)

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1363
Author(s):  
Patrik Micek ◽  
Dusan Pudis ◽  
Peter Gaso ◽  
Jana Durisova ◽  
Daniel Jandura

Recent advances in Surface Plasmon Resonance (SPR) technologies have shown the possibility of transmission enhancement of localized modes propagating through sub-diffraction wide slits and apertures, resulting in the strong near-field focusing of metallic planar nanostructures. This work presents a new approach to the fabrication of high-resolution near-field optical probes using 3D lithography in combination with numerical finite difference time domain (FDTD) simulations. A narrow 500 nm depth of field focus area was observed both by numerical analysis and near field scanning optical microscopy (NSOM) measurements. Further research and optimization are planned in order to achieve subwavelength focal regions and increased signal intensities.







2021 ◽  
Vol 118 (24) ◽  
pp. 241105
Author(s):  
Swetapadma Sahoo ◽  
Hana Azzouz ◽  
Simeon I. Bogdanov




Author(s):  
Kannan M. Krishnan

Propagation of light is described as the simple harmonic motion of transverse waves. Combining waves that propagate on orthogonal planes give rise to linear, elliptical, or spherical polarization, depending on their amplitudes and phase differences. Classical experiments of Huygens and Young demonstrated the principle of optical interference and diffraction. Generalization of Fraunhofer diffraction to scattering by a three-dimensional arrangement of atoms in crystals forms the basis of diffraction methods. Fresnel diffraction finds application in the design of zone plates for X-ray microscopy. Optical microscopy, with resolution given by the Rayleigh criterion to be approximately half the wavelength, works best when tailored to the optimal characteristics of the human eye (λ = 550 nm). Lenses suffer from spherical and chromatic aberrations, and astigmatism. Optical microscopes operate in bright-field, oblique, and dark-field imaging conditions, produce interference contrast, and can image with polarized light. Variants include confocal scanning optical microscopy (CSOM). Metallography, widely used to characterize microstructures, requires polished or chemically etched surfaces to provide optimal contrast. Finally, the polarization state of light reflected from the surface of a specimen is utilized in ellipsometry to obtain details of the optical properties and thickness of thin film materials.



Sign in / Sign up

Export Citation Format

Share Document