scholarly journals Stereochemical Control In Electroreductive Cyclization Reactions Using Chiral Auxiliaries and Lewis Acid Complexes

Synthesis ◽  
2018 ◽  
Vol 51 (01) ◽  
pp. 67-82 ◽  
Author(s):  
Anthony Barrett ◽  
Tsz-Kan Ma ◽  
Thomas Mies

Cascade polyene cyclization reactions are highly efficient and elegant bioinspired transformations that involve simultaneous multiple bond constructions to rapidly generate complex polycyclic molecules. This review summarizes the most prominent work on a variety of cationic and radical cascade cyclizations and their applications in natural product synthesis published between 2014 and 2018.1 Introduction2 Cationic Polyene Cyclizations2.1 Lewis Acid Mediated Polyene Cyclizations2.2 Brønsted Acid Mediated Polyene Cyclizations2.3 Halogen Electrophile Initiated Polyene Cyclizations2.4 Sulfur Electrophile Initiated Polyene Cyclizations2.5 Transition-Metal-Mediated Cationic Polyene Cyclizations3 Radical Polyene Cyclizations3.1 Transition-Metal-Mediated Radical Polyene Cyclizations3.2 Photocatalyst-Mediated Polyene Cyclizations4 Origin of Stereocontrol in Polyene Cyclizations5 Conclusion


2002 ◽  
Vol 4 (7) ◽  
pp. 1239-1241 ◽  
Author(s):  
Dan Yang ◽  
Qiang Gao ◽  
On-Yi Lee

2021 ◽  
Author(s):  
Zhi Zhou ◽  
Gerard Roelfes

Enantioselective protonation is conceptually one of the most attractive methods to generate an α-chiral center. However, enantioselective protonation presents major challenges, especially in water as a solvent. Herein, we report an artificial enzyme catalyzed tandem Michael addition and enantioselective protonation reaction of α-substituted acroleins with 2-acyl imidazole derivatives in water. The artificial enzyme uses a synergistic combination of two abiological catalytic sites: a genetically encoded non-canonical p-aminophenylalanine residue and a Lewis acid Cu(II) complex. The exquisite stereochemical control achieved in the protonation of the transient enamine intermediate generated by conjugate addition of the Michael donor is illustrated by the >20:1 dr and up to >99% ee obtained for the products. These results illustrate the potential of exploiting synergistic catalysis in artificial enzymes for challenging reactions.<br>


2017 ◽  
Vol 82 (13) ◽  
pp. 6748-6763 ◽  
Author(s):  
Shoko Yamazaki ◽  
Taku Naito ◽  
Mamiko Niina ◽  
Kiyomi Kakiuchi

Sign in / Sign up

Export Citation Format

Share Document