artificial enzyme
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 64)

H-INDEX

32
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Linda Ofori Atta ◽  
Zhi Zhou ◽  
Gerard Roelfes

Artificial enzymes utilizing the genetically encoded non-proteinogenic amino acid p-aminophenylalanine (pAF) as catalytic residue are able to react with carbonyl compounds through an iminium ion mechanism, making reactions possible that have no equivalent in nature. Here, we report an in vivo biocatalytic cascade that is augmented with such an artificial enzyme catalyzed new-to-nature reaction. The artificial enzyme in this study is a pAF containing evolved variant of the Lactococcal multidrug resistance Regulator, designated LmrR_V15pAF_RMH, which efficiently converts in vivo produced benzaldehyde derivatives into the corresponding hydrazone products inside E. coli cells. These in vivo biocatalytic cascades comprising an artificial enzyme catalyzed reactions are an important step towards achieving a hybrid metabolism.


2021 ◽  
Author(s):  
Reuben Leveson-Gower ◽  
Ruben de Boer ◽  
Gerard Roelfes

The incorporation of organocatalysts into protein scaffolds, i.e. the production of organocatalytic artificial enzymes, holds the promise of overcoming some of the limitations of this powerful catalytic approach. In particular, transformations for which good reactivity or selectivity is challenging for organocatalysts may find particular benefit from translation into a protein scaffold so that its chiral microenvironment can be utilised in catalysis. Previously, we showed that incorporation of the non-canonical amino acid para-aminophenylalanine into the non-enzymatic protein scaffold LmrR forms a proficient and enantioselective artificial enzyme (LmrR_pAF) for the Friedel-Crafts alkylation of indoles with enals. The unnatural aniline side-chain is directly involved in catalysis, operating via a well-known organocatalytic iminium-based mechanism. In this study, we show that LmrR_pAF can enantioselectively form tertiary carbon centres not only during C-C bond formation, but also by enantioselective protonation. Control over this process is an ongoing challenge for small-molecule catalysts for which general solutions do not exist. LmrR_pAF can selectively deliver a proton to one face of a prochiral enamine intermediate delivering product enantiomeric excesses and yields that rival the best organocatalyst for this transformation. The importance of various side-chains in the pocket of LmrR is distinct from the Friedel-Crafts reaction without enantioselective protonation, and two particularly important residues were probed by exhaustive mutagenesis. This study shows how organocatalytic artificial enzymes can provide solutions to transformations which otherwise require empirical optimisation and design of multifunctional small molecule catalysts.


2021 ◽  
Author(s):  
Thomas Williams ◽  
Yu-Hsuan Tsai ◽  
Louis Luk

Abstract Here, incorporation of secondary amine by genetic code expansion was used to expand the potential protein templates for artificial enzyme design. Pyrrolysine analogue containing a D-proline could be stably incorporated into proteins, including the multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Both modified scaffolds were catalytically active, mediating transfer hydrogenation with a relaxed substrate scope. The protein templates played a distinctive role in that, while the LmrR variants were confined to the biomimetic BNAH as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for reactions. Due to the cofactor compatibility, the DHFR secondary amine catalysis could also be coupled to an enzymatic recycling scheme. This work has illustrated the unique advantages of using proteins as hosts, and thus the presented concept is expected to find uses in enabling tailored secondary amine catalysis.


2021 ◽  
Author(s):  
Gregory Anderson ◽  
Raghu Nath Behera ◽  
Ravi Gomatam

Vanadium haloperoxidases play an important catalytic role in the natural production of antibiotics which are difficult to make in the laboratory. Understanding the catalytic mechanism of these enzymes will aide in the production of artificial enzymes useful in bioengineering the synthesis of drugs and useful chemicals. However, the catalytic mechanism remains not fully understood yet. In this paper, we investigate one of the key steps of the catalytic mechanism using QM/MM. Our investigation reveals a new N-haloxy histidyl intermediate in the catalytic cycle of vanadium chloroperoxidase (VCPO). This new intermediate, in turn, yields an explanation for the known inhibition of the enzyme by substrate under acidic conditions (pH<4). Additionally, we examine the possibility of replacing V in VCPO by Nb or Ta using QM modeling. We report the new result that the Gibbs free energy barrier of several steps of the catalytic cycle are lower in the case of artificial enzymes, incorporating NbO43- or TaO43- instead of VO43-. Our results suggest that these new artificial enzymes may catalyze the oxidation of halide faster than the natural enzyme.


2021 ◽  
Author(s):  
Wenjian Han ◽  
Wendi Huang ◽  
Miaowei Mao ◽  
Tong Wei ◽  
Yanwen Ye ◽  
...  

ABSTRACTProgrammable RNA editing enables rewriting gene expression without changing genome sequences. Current tools for specific RNA editing dependent on the assembly of guide RNA into an RNA/protein complex, causing delivery barrier and low editing efficiency. We report a new gRNA-free system, RNA editing with individual RNA-binding enzyme (REWIRE), to perform precise base editing with a single engineered protein. This artificial enzyme contains a human-originated programmable PUF domain to specifically recognize RNAs and different deaminase domains to achieve efficient A-to-I or C-to-U editing, which achieved 60-80% editing rate in human cells, with a few non-specific editing sites in the targeted region and a low level off-target effect globally. The RNA-binding domain in REWIREs was further optimized to improve editing efficiency and minimize off-target effects. We applied the REWIREs to correct disease-associated mutations and achieve both types of base editing in mice. As a single-component system originated from human proteins, REWIRE presents a precise and efficient RNA editing platform with broad applicability.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 953
Author(s):  
Thomas Bayer ◽  
Aileen Becker ◽  
Henrik Terholsen ◽  
In-Jung Kim ◽  
Ina Menyes ◽  
...  

The application of genetically encoded biosensors enables the detection of small molecules in living cells and has facilitated the characterization of enzymes, their directed evolution and the engineering of (natural) metabolic pathways. In this work, the LuxAB biosensor system from Photorhabdus luminescens was implemented in Escherichia coli to monitor the enzymatic production of aldehydes from primary alcohols and carboxylic acid substrates. A simple high-throughput assay utilized the bacterial luciferase—previously reported to only accept aliphatic long-chain aldehydes—to detect structurally diverse aldehydes, including aromatic and monoterpene aldehydes. LuxAB was used to screen the substrate scopes of three prokaryotic oxidoreductases: an alcohol dehydrogenase (Pseudomonas putida), a choline oxidase variant (Arthrobacter chlorophenolicus) and a carboxylic acid reductase (Mycobacterium marinum). Consequently, high-value aldehydes such as cinnamaldehyde, citral and citronellal could be produced in vivo in up to 80% yield. Furthermore, the dual role of LuxAB as sensor and monooxygenase, emitting bioluminescence through the oxidation of aldehydes to the corresponding carboxylates, promises implementation in artificial enzyme cascades for the synthesis of carboxylic acids. These findings advance the bio-based detection, preparation and transformation of industrially important aldehydes in living cells.


Sign in / Sign up

Export Citation Format

Share Document