scholarly journals Excessive dietary salt promotes aortic stiffness in murine renovascular hypertension

2020 ◽  
Vol 318 (5) ◽  
pp. H1346-H1355 ◽  
Author(s):  
Leon J. DeLalio ◽  
Scott Hahn ◽  
Pedro L. Katayama ◽  
Megan M. Wenner ◽  
William B. Farquhar ◽  
...  

High dietary salt exaggerates hypertension in multiple experimental models. Here we demonstrate that a high-salt diet produces a greater increase in arterial blood pressure at 1 wk after induction of 2-kidney, 1-clip (2K1C) hypertension but not at 3 wk. Interestingly, 2K1C mice fed a high-salt diet displayed an exaggerated pulse pressure, elevated pulse wave velocity, and reduced endothelium-dependent vasodilation of the aorta but not mesenteric arteries. These findings suggest that dietary salt may interact with underlying cardiovascular disease to promote selective vascular dysfunction and aortic stiffness.

1998 ◽  
Vol 274 (5) ◽  
pp. H1423-H1428 ◽  
Author(s):  
Chohreh Partovian ◽  
Athanase Benetos ◽  
Jean-Pierre Pommiès ◽  
Willy Mischler ◽  
Michel E. Safar

Bradykinin activity could explain the blood pressure increase during NaCl loading in hypertensive animals, but its contribution on vascular structure was not evaluated. We determined cardiac mass and large artery structure after a chronic, 4-mo, high-salt diet in combination with bradykinin B2-receptor blockade by Hoe-140. Four-week-old rats were divided into eight groups according to strain [spontaneously hypertensive rats (SHR) vs. Wistar-Kyoto (WKY) rats], diet (0.4 vs. 7% NaCl), and treatment (Hoe-140 vs. placebo). In WKY rats, a high-salt diet significantly increased intra-arterial blood pressure with minor changes in arterial structure independently of Hoe-140. In SHR, blood pressure remained stable but 1) the high-salt diet was significantly associated with cardiovascular hypertrophy and increased arterial elastin and collagen, and 2) Hoe-140 alone induced carotid hypertrophy. A high-salt diet plus Hoe-140 acted synergistically on carotid hypertrophy and elastin content in SHR, suggesting that the role of endogenous bradykinin on arterial structure was amplified in the presence of a high-salt diet.


2020 ◽  
Vol Volume 13 ◽  
pp. 111-124
Author(s):  
Dragana Komnenov ◽  
Peter E Levanovich ◽  
Natalia Perecki ◽  
Charles S Chung ◽  
Noreen F Rossi

2019 ◽  
Vol 597 (18) ◽  
pp. 4715-4728
Author(s):  
Andrew G. Woodman ◽  
Ronan M. N. Noble ◽  
Sareh Panahi ◽  
Ferrante S. Gragasin ◽  
Stephane L. Bourque

2013 ◽  
Vol 81 (6) ◽  
pp. 2258-2267 ◽  
Author(s):  
Jennifer A. Gaddy ◽  
Jana N. Radin ◽  
John T. Loh ◽  
Feng Zhang ◽  
M. Kay Washington ◽  
...  

ABSTRACTPersistent colonization of the human stomach withHelicobacter pyloriis a risk factor for gastric adenocarcinoma, andH. pylori-induced carcinogenesis is dependent on the actions of a bacterial oncoprotein known as CagA. Epidemiological studies have shown that high dietary salt intake is also a risk factor for gastric cancer. To investigate the effects of a high-salt diet, we infected Mongolian gerbils with a wild-type (WT)cagA+H. pyloristrain or an isogeniccagAmutant strain and maintained the animals on a regular diet or a high-salt diet. At 4 months postinfection, gastric adenocarcinoma was detected in 100% of the WT-infected/high-salt-diet animals, 58% of WT-infected/regular-diet animals, and none of the animals infected with thecagAmutant strain (P< 0.0001). Among animals infected with the WT strain, those fed a high-salt diet had more severe gastric inflammation, higher gastric pH, increased parietal cell loss, increased gastric expression of interleukin 1β (IL-1β), and decreased gastric expression of hepcidin and hydrogen potassium ATPase (H,K-ATPase) compared to those on a regular diet. Previous studies have detected upregulation of CagA synthesis in response to increased salt concentrations in the bacterial culture medium, and, concordant with thein vitroresults, we detected increasedcagAtranscriptionin vivoin animals fed a high-salt diet compared to those on a regular diet. Animals infected with thecagAmutant strain had low levels of gastric inflammation and did not develop hypochlorhydria. These results indicate that a high-salt diet potentiates the carcinogenic effects ofcagA+H. pyloristrains.


2005 ◽  
Vol 288 (4) ◽  
pp. H1557-H1565 ◽  
Author(s):  
Jingli Wang ◽  
Richard J. Roman ◽  
John R. Falck ◽  
Lourdes de la Cruz ◽  
Julian H. Lombard

This study investigated the role of changes in the expression of the cytochrome P-450 4A (CYP450-4A) enzymes that produce 20-hydroxyeicosatetraenoic acid (20-HETE) in modulating the responses of rat mesenteric resistance arteries to norepinephrine (NE) and reduced Po2 after short-term (3-day) changes in dietary salt intake. The CYP450-4A2, -4A3, and -4A8 isoforms were all detected by RT-PCR in arteries obtained from rats fed a high-salt (HS, 4% NaCl) diet, whereas only the CYP450-4A3 isoform was detected in vessels from rats fed a low-salt (LS, 0.4% NaCl) diet. Expression of the 51-kDa CYP450-4A protein was significantly increased by a HS diet. Inhibiting 20-HETE synthesis with 30 μM N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) reduced the vasoconstrictor response to NE in arteries obtained from rats fed either a LS or HS diet, but NE sensitivity after DDMS treatment was significantly lower in vessels from rats on a HS diet. DDMS treatment also restored the vasodilator response to reduced Po2 that was impaired in arteries from rats on a HS diet. These findings suggest that 1) a HS diet increases the expression of CYP450-4A enzymes in the mesenteric vasculature, 2) 20-HETE contributes to the vasoconstrictor response to NE in mesenteric resistance arteries, 3) the contribution of 20-HETE to the vasoconstrictor response to NE is greater in rats fed a HS diet than in rats fed a LS diet, and 4) upregulation of the production of 20-HETE contributes to the impaired dilation of mesenteric resistance arteries in response to hypoxia in rats fed a HS diet.


Cardiology ◽  
2015 ◽  
Vol 130 (4) ◽  
pp. 242-248 ◽  
Author(s):  
Yang Wang ◽  
Dan Wang ◽  
Chao Chu ◽  
Jian-Jun Mu ◽  
Man Wang ◽  
...  

Objective: The aim of our study was to assess the effects of altered salt and potassium intake on urinary renalase and serum dopamine levels in humans. Methods: Forty-two subjects (28-65 years of age) were selected from a rural community of northern China. All subjects were sequentially maintained on a low-salt diet for 7 days (3.0 g/day of NaCl), a high-salt diet for an additional 7 days (18.0 g/day of NaCl), and a high-salt diet with potassium supplementation for a final 7 days (18.0 g/day of NaCl + 4.5 g/day of KCl). Results: Urinary renalase excretions were significantly higher during the high-salt diet intervention than during the low-salt diet. During high-potassium intake, urinary renalase excretions were not significantly different from the high-salt diet, whereas they were significantly higher than the low-salt levels. Serum dopamine levels exhibited similar trends across the interventions. Additionally, a significant positive relationship was observed between the urine renalase and serum dopamine among the different dietary interventions. Also, 24-hour urinary sodium excretion positively correlated with urine renalase and serum dopamine in the whole population. Conclusions: The present study indicates that dietary salt intake and potassium supplementation increase urinary renalase and serum dopamine levels in Chinese subjects.


1999 ◽  
Vol 276 (6) ◽  
pp. R1749-R1757 ◽  
Author(s):  
Osamu Ito ◽  
Richard J. Roman

We recently reported that an enzyme of the cytochrome P-450 4A family is expressed in the glomerulus, but there is no evidence that 20-hydroxyeicosatetraenoic acid (20-HETE) can be produced by this tissue. The purpose of present study was to determine whether glomeruli isolated from the kidney of rats can produce 20-HETE and whether the production of this metabolite is regulated by nitric oxide (NO) and dietary salt intake. Isolated glomeruli produced 20-HETE, dihydroxyeicosatrienoic acids, and 12-hydroxyeicosatetraenoic acid (4.13 ± 0.38, 4.20 ± 0.38, and 2.10 ± 0.20 pmol ⋅ min−1⋅ mg protein−1, respectively) when incubated with arachidonic acid (10 μM). The formation of 20-HETE was dependent on the availability of NADPH and the[Formula: see text] of the incubation medium. The formation of 20-HETE was inhibited by NO donors in a concentration-dependent manner. The production of 20-HETE was greater in glomeruli isolated from the kidneys of rats fed a low-salt diet than in kidneys of rats fed a high-salt diet (5.67 ± 0.32 vs. 2.83 ± 0.32 pmol ⋅ min−1⋅ mg protein−1). Immunoblot experiments indicated that the expression of P-450 4A protein in glomeruli from the kidneys of rats fed a low-salt diet was sixfold higher than in kidneys of rats fed a high-salt diet. These results indicate that arachidonic acid is primarily metabolized to 20-HETE and dihydroxyeicosatrienoic acids in glomeruli and that glomerular P-450 activity is modulated by NO and dietary salt intake.


1991 ◽  
Vol 261 (6) ◽  
pp. H1895-H1902 ◽  
Author(s):  
L. A. Cowen ◽  
M. R. Harold ◽  
C. M. Chen ◽  
R. E. Abbott ◽  
D. Schachter

The Dahl salt-sensitive rat (DS) is a model of genetically determined arterial hypertension exacerbated by dietary salt. We report two additional abnormalities of DS rats, which are both genetically determined and enhanced by salt: 1) immunoglobulin disorders and 2) renal dysfunctions. These abnormalities precede and are not the result of the arterial hypertension. In young, prehypertensive DS rats the plasma and tissue concentrations of immunoglobulin (Ig) G, but not of IgM or IgA, are decreased compared with those of the salt-resistant strain (DR). A high-salt diet (8.0% NaCl) decreases the plasma and tissue IgG levels of DS but not of DR rats. Reduction of IgG in the DS strain results from both decreased synthesis and increased urinary excretion. Renal dysfunction in young, prehypertensive DS animals is manifested by increased excretion of high molecular weight proteins, including albumin, IgG, IgA, and IgM. The high-salt diet increases the urinary excretion of these proteins within 1-2 days, and the effect is much greater in DS compared with DR rats. The urinary excretion of IgG is selectively increased relative to immunoglobulin light chains, IgA and IgM in DS compared with DR animals. The present studies provide new markers characteristic of the DS phenotype and pose the issue of possible genetic or functional interrelationships among the salt-sensitive hypertension, immunoglobulin disorders, and renal dysfunctions.


Sign in / Sign up

Export Citation Format

Share Document