Nicotine increases heart adenosine release, oxygen consumption, and contractility

1985 ◽  
Vol 249 (3) ◽  
pp. H463-H469 ◽  
Author(s):  
R. A. Fenton ◽  
J. G. Dobson

The effect of nicotine on adenosine release, oxygen consumption, and contractility was investigated in perfused rat hearts. Continuous infusion of nicotine into the perfusing physiological saline (PS) elicited a propranolol (10(-6) M) sensitive transient elevation of developed left ventricular pressure (LVP) and maximum rates of left ventricular pressure development and relaxation (+/- dP/dtmax) within 20 s, which subsequently declined to maintained elevated plateau levels by 1 min. The continuous infusions of nicotine to achieve PS concentrations of 5 X 10(-4), 1 X 10(-4), or 5 X 10(-5) M, respectively resulted in significant increases in the mean plateau levels of LVP (33.4, 10.1, or 6.3%), +dP/dtmax (26.3, 10.8, or 6.9%) and-dP/dtmax (35.0, 11.9, or 9.0%) at 1 min. The inclusion of propranolol (10(-6) M) with or without atropine (10(-6) M) did not alter these maintained plateau responses to nicotine. During the plateau phase of the contractile response oxygen consumption of the hearts was significantly elevated by 36, 19, or 11%, and mean levels for adenosine in the coronary effluent rose by 261, 76, or 74% in response to 5 X 10(-4), 1 X 10(-4), or 5 X 10(-5) M nicotine, respectively. Nicotine did not influence [14C]adenosine uptake by the hearts. These results suggest that nicotine is capable of 1) augmenting cardiac contractility and oxygen consumption independent of beta-adrenergic or muscarinic influence, and 2) elevating the appearance of adenosine in the coronary circulation presumably by enhancing myocardial production of the nucleoside.

1963 ◽  
Vol 205 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Andrew G. Wallace ◽  
N. Sheldon Skinner ◽  
Jere H. Mitchell

The maximal rate of left ventricular pressure development (max. dp/dt) was measured in an areflexic preparation which permitted independent control of stroke volume, heart rate, and aortic pressure. Max. dp/dt increased as a result of elevating ventricular end-diastolic pressure. Elevating mean aortic pressure and increasing heart rate each resulted in a higher max. dp/dt without a change in ventricular end-diastolic pressure. Aortic diastolic pressure was shown to influence max. dp/dt in the absence of changes in ventricular end-diastolic pressure or contractility. Increasing contractility increased max. dp/dt while changing the manner of ventricular activation decreased max. dp/dt. These findings demonstrate that changes in max. dp/dt can and frequently do reflect changes in myocardial contractility. These data also indicate that max. dp/dt is a complex function, subject not only to extrinsically induced changes in contractility, but also to ventricular end-diastolic pressure, aortic diastolic pressure, the manner of ventricular activation, and intrinsic adjustments of contractility.


1973 ◽  
Vol 31 (4) ◽  
pp. 415-427 ◽  
Author(s):  
Hans Peter Krayenbuehl ◽  
Wilhelm Rutishauser ◽  
Pierre Wirz ◽  
Ivo Amende ◽  
Helmuth Mehmel

Sign in / Sign up

Export Citation Format

Share Document