pressure rise
Recently Published Documents


TOTAL DOCUMENTS

1957
(FIVE YEARS 369)

H-INDEX

54
(FIVE YEARS 7)

2022 ◽  
pp. 1-8
Author(s):  
Ashwin Salvi ◽  
Reed Hanson ◽  
Rodrigo Zermeno ◽  
Gerhard Regner ◽  
Mark Sellnau ◽  
...  

Abstract Gasoline compression ignition (GCI) is a cost-effective approach to achieving diesel-like efficiencies with low emissions. The fundamental architecture of the two-stroke Achates Power Opposed-Piston Engine (OP Engine) enables GCI by decoupling piston motion from cylinder scavenging, allowing for flexible and independent control of cylinder residual fraction and temperature leading to improved low load combustion. In addition, the high peak cylinder pressure and noise challenges at high-load operation are mitigated by the lower BMEP operation and faster heat release for the same pressure rise rate of the OP Engine. These advantages further solidify the performance benefits of the OP Engine and emonstrate the near-term feasibility of advanced combustion technologies, enabled by the opposed-piston architecture. This paper presents initial results from a steady state testing on a brand new 2.7L OP GCI multi-cylinder engine designed for light-duty truck applications. Successful GCI operation calls for high compression ratio, leading to higher combustion stability at low-loads, higher efficiencies, and lower cycle HC+NOX emissions. Initial results show a cycle average brake thermal efficiency of 31.7%, which is already greater than 11% conventional engines, after only ten weeks of testing. Emissions results suggest that Tier 3 Bin 160 levels can be achieved using a traditional diesel after-treatment system. Combustion noise was well controlled at or below the USCAR limits. In addition, initial results on catalyst light-off mode with GCI are also presented.


2022 ◽  
Vol 354 ◽  
pp. 00041
Author(s):  
Adrian Marius Jurca ◽  
Mihaela Părăian ◽  
Niculina Vătavu

Combustible dusts which are present in workplaces are a significant hazard which cannot be ignored by the plant owners, managers and workers. Combustible dust deflagrations and explosions have caused large numbers of deaths and catastrophic property damages in various industries, ranging from pharmaceutical plants to sugar factories. One may say that dust explosions in process industries always start inside process equipment such as mills, dryers, filters. Such events may occur in any process in which a combustible dust is handled, produced or stored, and can be triggered by any energy source, including static electricity, friction and hot surfaces. For any combustible dust type, several important parameters have to be taken into account when designing and using protective systems: i.e. the ease with which dust clouds ignite and their burning rates, maximum explosion pressure, maximum rate of explosion pressure rise. These parameters vary considerably depending on the dust type, their knowledge being a first step for carrying out a proper explosion risk assessment in installations which circulate combustible dusts. The paper presents the main aspects concerning explosion protection which have to be taken into account when designing protective systems intended to be used in explosive atmospheres generated by combustible dusts and the importance of selecting the proper explosion protection technique.


Author(s):  
Zhengfeng Liu ◽  
Hui Yang ◽  
Haijiang He ◽  
Peiquan Yu ◽  
Yikun Wei ◽  
...  

The characteristics of internal flow and performance of a centrifugal fan is greatly dependent on the inflow pattern. As the fan is subjected to incoming flow from an upstream tube, the size and geometry of the tube affect the three-dimensional motion of local flow and possibly degrades the aerodynamic performance of the fan. In this work, we performed a numerical investigation on the internal flow in a centrifugal fan subjected to incoming flow from an upstream bended inflow tube of various radii using the steady and unsteady Reynolds-averaged Navier-Stokes (RANS and URANS) simulation approaches. The effects of the non-axisymmetric pre-swirl flow generated due to the curvature of the bended inflow tube are demonstrated by analyzing the internal flow characteristics of the fan, including the spatial distributions and temporal variations of pressure field and streamlines, pressure fluctuations in the upstream tube, the inflow and outflow sections of the impeller, and the circumferential distributions of velocity and pressure in the impeller. The numerical results reveal that as the inflow tube is curved with larger curvature (smaller radius of the bended section), the pre-swirl inflow is strong and deteriorates the static pressure rise and static pressure efficiency of the centrifugal fan more remarkably, and the circumferential non-uniformity of pressure and velocity distributions appears inside of the channels of the fan. As the radius of the bended section increases, the instability of the internal flow gets more pronounced, as represented by the stronger pressure fluctuations at the inflow and outflow sections. The prediction capabilities of RANS and URANS approaches are also analyzed based on the numerical data and we found that the latter is more reliable in predicting the performance of the fan.


Author(s):  
Ibham Veza ◽  
Mohd Farid Muhamad Said ◽  
Zulkarnain Abdul Latiff ◽  
Mohd Azman Abas ◽  
Mohd Rozi Mohd Perang ◽  
...  

Homogeneous charge compression ignition (HCCI) engine has emerged as a promising combustion technology. Theoretically, an HCCI engine can reduce both NOx and soot emissions significantly down to almost zero levels. This is possible as a result of two fundamental processes that occur in the HCCI engine, i.e. the homogeneous mixture and its autoignition characteristics. Neither spark plug nor injector is used in the HCCI engine. The autoignition of the homogeneous mixture is solely influenced by its chemical reactions inside the combustion chamber. However, this is where the problems start to occur. At low loads or too lean mixtures, misfire may occur, thus increasing the HC and CO emissions. At high loads or too rich mixtures, soot emissions and knocking tendency may increase. Moreover, an undesirable pressure rise due to knocking will increase the combustion temperature and potentially increase the probability of NOx formation. Therefore, the operating range of HCCI engine is very limited only to part loads. Controlling its combustion phasing play an important role to extend the narrow operating range of the HCCI engine. Despite numerous review articles have been published, classification of the approaches to achieve HCCI combustion in diesel engines were rarely presented clearly. Therefore, this review article aims to provide a concise and comprehensive classification of HCCI combustion so that the role and position of each strategy found in the literature could be understood distinctively. In short, two important questions must be solved to have successful HCCI combustion; (1) how to form a homogeneous mixture? and (2) how to control its auto-ignition?


2021 ◽  
pp. 146808742110655
Author(s):  
Jorge Pulpeiro González ◽  
Carrie M Hall ◽  
Christopher P Kolodziej

In internal combustion engine research, cylinder pressure measurements provide valuable information about the underlying thermodynamic and combustion processes, and are typically collected in ensembles of several 100 traces. Although in some particular fields of combustion research all traces are analyzed, in most cases only one trace is studied because analyzing all the traces is impractical due to the large number of collected samples. Instead, an ensemble-averaged pressure trace is commonly calculated and used for analysis. However, this pressure trace is highly smoothed and dynamic information is lost during the averaging process. With the average trace, pressure rise rates are lower and pressure oscillations such as the ones resulting from combustion knock are lost. In this work, a statistical method was developed to determine the “most representative cycle,” which is the cycle from the ensemble that has the pressure trace most representative of the engine operating condition. Eleven characteristic parameters are computed from each pressure trace and probabilistic distributions are obtained for each of the parameters using all the traces in the ensemble. Finally, the most representative cycle is selected by means of a cost function minimization. The benefits of this method are illustrated using experimental data from four very different engine platforms, under four different combustion modes and over a range of operating conditions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marina Fukuie ◽  
Daisuke Hoshi ◽  
Tatsuya Hashitomi ◽  
Koichi Watanabe ◽  
Takashi Tarumi ◽  
...  

Although water-based exercise is one of the most recommended forms of physical activity, little information is available regarding its influence on cardiac workload and myocardial oxygen supply-to-demand. To address this question, we compared subendocardial viability ratio (SEVR, the ratio of myocardial oxygen supply-to-demand), cardiac inotropy (via the maximum rate of aortic pressure rise [dP/dTmax]), and stroke volume (SV, via a Modelflow method) responses between water- and land-based exercise. Eleven healthy men aged 24 ± 1 years underwent mild- to moderate-intensity cycling exercise in water (WC) and on land (LC) consecutively on separate days. In WC, cardiorespiratory variables were monitored during leg cycling exercise (30, 45, and 60 rpm of cadence for 5 min each) using an immersible stationary bicycle. In LC, each participant performed a cycling exercise at the oxygen consumption (VO2) matched to the WC. SEVR and dP/dTmax were obtained by using the pulse wave analysis from peripheral arterial pressure waveforms. With increasing exercise intensity, SEVR exhibited similar progressive reductions in WC (from 211 ± 44 to 75 ± 11%) and LC (from 215 ± 34 to 78 ± 9%) (intensity effect: P < 0.001) without their conditional differences. WC showed higher SV at rest and a smaller increase in SV than LC (environment-intensity interaction: P = 0.009). The main effect of environment on SV was significant (P = 0.002), but that of dP/dTmax was not (P = 0.155). SV was correlated with dP/dTmax (r = 0.717, P < 0.001). When analysis of covariance (ANCOVA) was performed with dP/dTmax as a covariate, the environment effect on SV was still significant (P < 0.001), although environment-intensity interaction was abolished (P = 0.543). These results suggest that water-based exercise does not elicit unfavorable myocardial oxygen supply-to-demand balance at mild-to-moderate intensity compared with land-based exercise. Rather, water-based exercise may achieve higher SV and better myocardial energy efficiency than land-based exercise, even at the same inotropic force.


2021 ◽  
pp. 1-20
Author(s):  
Samuel H. Doyle ◽  
Bryn Hubbard ◽  
Poul Christoffersen ◽  
Robert Law ◽  
Duncan R. Hewitt ◽  
...  

Abstract Subglacial hydrology modulates basal motion but remains poorly constrained, particularly for soft-bedded Greenlandic outlet glaciers. Here, we report detailed measurements of the response of subglacial water pressure to the connection and drainage of adjacent water-filled boreholes drilled through kilometre-thick ice on Sermeq Kujalleq (Store Glacier). These measurements provide evidence for gap opening at the ice-sediment interface, Darcian flow through the sediment layer, and the forcing of water pressure in hydraulically-isolated cavities by stress transfer. We observed a small pressure drop followed by a large pressure rise in response to the connection of an adjacent borehole, consistent with the propagation of a flexural wave within the ice and underlying deformable sediment. We interpret the delayed pressure rise as evidence of no pre-existing conduit and the progressive decrease in hydraulic transmissivity as the closure of a narrow (< 1.5 mm) gap opened at the ice-sediment interface, and a reversion to Darcian flow through the sediment layer with a hydraulic conductivity of ≤ 10−6 m s−1. We suggest that gap opening at the ice-sediment interface deserves further attention as it will occur naturally in response to the rapid pressurisation of water at the bed.


Author(s):  
Hossein Khaleghi

The current study is aimed at understanding the effect of rotating tip clearance asymmetry on the operability and performance of a transonic compressor. Another objective of this investigation is to determine the influence of tip injection on reducing the detrimental effects of clearance asymmetry. Three dimensional unsteady Reynolds-averaged Navier–stokes simulations have been performed from choke to stall for different arrangements of non-uniform blade heights in a transonic fan. Furthermore, numerical computations have been conducted with endwall injection of air. The numerical results have been validated against experimental data. Results show that having the same mean tip clearance, the asymmetric compressor is less stable than the axisymmetric configuration. However, the peak pressure rise is found to be almost linearly correlated to the mean tip clearance for both the axisymmetric and asymmetric compressors. It is found that tip injection can desensitize the compressor to the tip clearance asymmetry. Results further reveal that tip clearance asymmetry does not change the compressor path to instability. However, endwall injection is found to be able to change the compressor stalling mode. Investigations concerning rotating non-uniformity (caused by non-uniform blade heights) are very few in open literature. The obtained results can assist in predicting the effect of rotating tip clearance asymmetry on the stability and performance of high-speed compressor rotors. Furthermore, the results uncover how tip injection can desensitize the compressor stability and affect its path into instability, which is one of the most important questions in the turbomachinery world.


Author(s):  
Safia Akram ◽  
Maria Athar ◽  
Khalid Saeed ◽  
Alia Razia ◽  
Taseer Muhammad ◽  
...  

The implications of double-diffusive convection and an inclined magnetic field on the peristaltic transport of a pseudoplastic nanofluid in an inclined asymmetric channel with slip boundaries were investigated in this research. The present problem is mathematically modeled using lubrication techniques, which results in highly nonlinear equations for the proposed problem that is solved using a numerical technique. The graphical findings show how temperature, pressure rise, concentration, pressure gradient, nanoparticle fraction, and stream functions affect key physical parameters of interest. It is revealed that the velocity value rises as the velocity slip parameter, temperature, and solutal Grashof number rise. Furthermore, increasing thermal slip, Dufour, Soret, Brownian motion, and thermophoresis factors increase the temperature profile. If [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text] the viscous model of classical Newtonian fluid is a special case of the preceding model.


2021 ◽  
Author(s):  
Chen Li ◽  
Hongming Wang

Three dimensional Reynolds averaged N-S equation and S-A turbulent model were adopted to simulate the flow field and hydraulic performance of the waterjet axial flow pump with the different impeller axial clearance. The numerical research results show that with the increase of axial clearance size, total pressure and static pressure rise at first and then decreases, torque and shaft power remain basically unchanged, the efficiency decreases gradually, the suction surface separation zone of stator expanded under the design condition. When the axial clearance is 30mm, the pump hydraulic performance and flow field are the best, and stator load distribution is the most uniform. When the axial clearance is 40–50mm the load of the lower part of stator leading edge is reduced greatly, which is not conducive to maintain static blade strength and maintain the stator rectifying action.


Sign in / Sign up

Export Citation Format

Share Document