Hyperoxia lowers sympathetic activity at rest but not during exercise in humans

1991 ◽  
Vol 260 (5) ◽  
pp. R873-R878 ◽  
Author(s):  
D. R. Seals ◽  
D. G. Johnson ◽  
R. F. Fregosi

The primary aim of this study was to determine the influence of systemic hyperoxia on sympathetic nervous system behavior at rest and during submaximal exercise in humans. In seven healthy subjects (aged 19-31 yr) we measured postganglionic sympathetic nerve activity to skeletal muscle (MSNA) in the leg, antecubital venous norepinephrine concentrations, heart rate, and arterial blood pressure during normoxic rest (control) followed by 3- to 4-min periods of either hyperoxic (100% O2 breathing) rest, normoxic exercise (rhythmic handgrips at 50% of maximum force), or hyperoxic exercise. During exercise, isocapnia was maintained by adding CO2 to the inspirate as necessary. At rest, hyperoxia lowered MSNA burst frequency (12-42%) and total activity (6-42%) in all subjects; the average reductions were 25 and 23%, respectively (P less than 0.05 vs. control). Heart rate also decreased during hyperoxia (6 +/- 1 beats/min, P less than 0.05), but arterial blood pressure was not affected. During hyperoxic compared with normoxic exercise, there were no differences in the magnitudes of the increases in MSNA burst frequency or total activity, plasma norepinephrine concentrations, or mean arterial blood pressure. In contrast, the increase in heart rate during hyperoxic exercise (13 +/- 2 beats/min) was less than the increase during normoxic exercise (20 +/- 2 beats/min; P less than 0.05). We conclude that, in healthy humans, systemic hyperoxia 1) lowers efferent sympathetic nerve activity to skeletal muscle under resting conditions without altering venous norepinephrine concentrations and 2) has no obvious modulatory effect on the nonactive muscle sympathetic nerve adjustments to rhythmic exercise.

1997 ◽  
Vol 273 (3) ◽  
pp. R864-R872 ◽  
Author(s):  
K. Zhang ◽  
W. G. Mayhan ◽  
K. P. Patel

The paraventricular nucleus (PVN) of the hypothalamus is known to be involved in the control of sympathetic outflow. The goal of the present study was to examine the role of nitric oxide within the PVN in the regulation of renal sympathetic nerve activity. Renal sympathetic nerve discharge (RSND), arterial blood pressure, and heart rate in response to the microinjection of nitric oxide synthase inhibitor NG-monomethyl-L-arginine (L-NMMA; 50, 100, and 200 pmol) into the PVN were measured in male Sprague-Dawley rats. Microinjection of L-NMMA elicited an increase in RSND, arterial blood pressure, and heart rate. Administration of NG-monomethyl-D-arginine (D-NMMA, 50-200 pmol) into the PVN did not change RSND, arterial pressure, or heart rate. Similarly, microinjection of another nitric oxide inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 100 nmol) also elicited an increase in RSND, arterial blood pressure, and heart rate. L-Arginine (100 nmol) reversed the effects of L-NAME in the PVN. Furthermore, microinjection of sodium nitroprusside (SNP; 50, 100, and 200 nmol) into the PVN elicited a significant decrease in RSND, arterial blood pressure, and heart rate. These effects of L-NMMA, L-NAME, and SNP on RSND and arterial blood pressure were not mediated by their vasoactive action because microinjection of phenylephrine and hydralazine did not elicit similar respective changes. In conclusion, our data indicate that endogenous nitric oxide within the PVN regulates sympathetic outflow via some inhibitory mechanisms. Altered nitric oxide mechanisms within the PVN may contribute to elevated sympathetic nerve activity observed during various diseases states such as heart failure and hypertension.


2013 ◽  
Vol 304 (5) ◽  
pp. H759-H766 ◽  
Author(s):  
Seth T. Fairfax ◽  
Jaume Padilla ◽  
Lauro C. Vianna ◽  
Michael J. Davis ◽  
Paul J. Fadel

Previous studies in humans attempting to assess sympathetic vascular transduction have related large reflex-mediated increases in muscle sympathetic nerve activity (MSNA) to associated changes in limb vascular resistance. However, such procedures do not provide insight into the ability of MSNA to dynamically control vascular tone on a beat-by-beat basis. Thus we examined the influence of spontaneous MSNA bursts on leg vascular conductance (LVC) and how variations in MSNA burst pattern (single vs. multiple bursts) and burst size may affect the magnitude of the LVC response. In 11 young men, arterial blood pressure, common femoral artery blood flow, and MSNA were continuously recorded during 20 min of supine rest. Signal averaging was used to characterize percent changes in LVC for 15 cardiac cycles following heartbeats associated with and without MSNA bursts. LVC significantly decreased following MSNA bursts, reaching a nadir during the 6th cardiac cycle (single bursts, −2.9 ± 1.1%; and multiple bursts, −11.0 ± 1.4%; both, P < 0.001). Individual MSNA burst amplitudes and the total amplitude of consecutive bursts were related to the magnitude of peak decreases in LVC. In contrast, cardiac cycles without MSNA bursts were associated with a significant increase in LVC (+3.1 ± 0.5%; P < 0.001). Total vascular conductance decreased in parallel with LVC also reaching a nadir around the peak rise in arterial blood pressure following an MSNA burst. Collectively, these data are the first to assess beat-by-beat sympathetic vascular transduction in resting humans, demonstrating robust and dynamic decreases in LVC following MSNA bursts, an effect that was absent for cardiac cycles without MSNA bursts.


1999 ◽  
Vol 277 (6) ◽  
pp. H2348-H2352 ◽  
Author(s):  
C. G. Crandall ◽  
R. A. Etzel ◽  
D. B. Farr

Whole body heating decreases central venous pressure (CVP) while increasing muscle sympathetic nerve activity (MSNA). In normothermia, similar decreases in CVP elevate MSNA, presumably via cardiopulmonary baroreceptor unloading. The purpose of this project was to identify whether increases in MSNA during whole body heating could be attributed to cardiopulmonary baroreceptor unloading coincident with the thermal challenge. Seven subjects were exposed to whole body heating while sublingual temperature, skin blood flow, heart rate, arterial blood pressure, and MSNA were monitored. During the heat stress, 15 ml/kg warmed saline was infused intravenously over 7–10 min to increase CVP and load the cardiopulmonary baroreceptors. We reported previously that this amount of saline was sufficient to return CVP to pre-heat stress levels. Whole body heating increased MSNA from 25 ± 3 to 39 ± 3 bursts/min ( P < 0.05). Central blood volume expansion via rapid saline infusion did not significantly decrease MSNA (44 ± 4 bursts/min, P > 0.05 relative to heat stress period) and did not alter mean arterial blood pressure (MAP) or pulse pressure. To identify whether arterial baroreceptor loading decreases MSNA during heat stress, in a separate protocol MAP was elevated via steady-state infusion of phenylephrine during whole body heating. Increasing MAP from 82 ± 3 to 93 ± 4 mmHg ( P < 0.05) caused MSNA to decrease from 36 ± 3 to 15 ± 4 bursts/min ( P < 0.05). These data suggest that cardiopulmonary baroreceptor unloading during passive heating is not the primary mechanism resulting in elevations in MSNA. Moreover, arterial baroreceptors remain capable of modulating MSNA during heat stress.


2007 ◽  
Vol 103 (4) ◽  
pp. 1284-1289 ◽  
Author(s):  
Jian Cui ◽  
Sylvain Durand ◽  
Craig G. Crandall

Skin surface cooling improves orthostatic tolerance through a yet to be identified mechanism. One possibility is that skin surface cooling increases the gain of baroreflex control of efferent responses contributing to the maintenance of blood pressure. To test this hypothesis, muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate were recorded in nine healthy subjects during both normothermic and skin surface cooling conditions, while baroreflex control of MSNA and heart rate were assessed during rapid pharmacologically induced changes in arterial blood pressure. Skin surface cooling decreased mean skin temperature (34.9 ± 0.2 to 29.8 ± 0.6°C; P < 0.001) and increased mean arterial blood pressure (85 ± 2 to 93 ± 3 mmHg; P < 0.001) without changing MSNA ( P = 0.47) or heart rate ( P = 0.21). The slope of the relationship between MSNA and diastolic blood pressure during skin surface cooling (−3.54 ± 0.29 units·beat−1·mmHg−1) was not significantly different from normothermic conditions (−2.94 ± 0.21 units·beat−1·mmHg−1; P = 0.19). The slope depicting baroreflex control of heart rate was also not altered by skin surface cooling. However, skin surface cooling shifted the “operating point” of both baroreflex curves to high arterial blood pressures (i.e., rightward shift). Resetting baroreflex curves to higher pressure might contribute to the elevations in orthostatic tolerance associated with skin surface cooling.


Sign in / Sign up

Export Citation Format

Share Document