renal sympathetic nerve activity
Recently Published Documents


TOTAL DOCUMENTS

577
(FIVE YEARS 27)

H-INDEX

45
(FIVE YEARS 1)

Hypertension ◽  
2021 ◽  
Vol 78 (5) ◽  
pp. 1450-1462
Author(s):  
Yiling Cao ◽  
Yang Yu ◽  
Baojian Xue ◽  
Ye Wang ◽  
Xiaolei Chen ◽  
...  

IL (Interleukin)-17A is a key inflammatory mediator contributing to chronic tissue inflammation. The present study sought to determine whether IL-17A plays a role in regulating neuroinflammation, hemodynamics, and sympathetic outflow in normal and hypertensive animals. In urethane-anesthetized rats, intravenous injection of IL-17A induced dramatic and prolonged increases in blood pressure, heart rate, and renal sympathetic nerve activity, which were significantly attenuated by an IL-17RA (IL-17 receptor A) siRNA in the hypothalamic paraventricular nucleus (PVN). Either intracerebroventricular or PVN microinjection of IL-17A also elicited a similar excitatory response in blood pressure, heart rate, and renal sympathetic nerve activity. Intravenous injection of IL-17A upregulated the mRNA level of IL-17A, IL-17F, and IL-17RA in the PVN. Additionally, intravenous injection of IL-17A activated brain-resident glial cells and elevated the gene expression of inflammatory cytokines and chemokines in the PVN, which were markedly diminished by PVN microinjection of IL-17RA siRNA. Pretreatments with microglia or astrocyte inhibitors attenuated the increase in blood pressure, heart rate, and renal sympathetic nerve activity in response to PVN IL-17A. Moreover, intracerebroventricular injection of IL-17A activated TGF (transforming growth factor)-β activated kinase 1, p44/42 mitogen-activated protein kinase, and transcriptional nuclear factor κB in the PVN. IL-17A interacted with tumor necrosis factor-α or IL-1β synergistically to exaggerate its influence on hemodynamic and sympathetic responses. Central intervention suppressing IL-17RA in the PVN significantly reduced angiotensin II–induced hypertension, neuroinflammation, and sympathetic tone in the rats. Collectively, these data indicated that IL-17A in the brain promotes neuroinflammation to advance sympathetic activation and hypertension, probably by a synergistic mechanism involving the interaction with various inflammatory mediators within the brain.


Function ◽  
2021 ◽  
Author(s):  
Micael Taavo ◽  
Mats Rundgren ◽  
Peter Frykholm ◽  
Anders Larsson ◽  
Stephanie Franzén ◽  
...  

Abstract Regulation of fluid balance is pivotal during surgery and anesthesia and affects patient morbidity, mortality and hospital length of stay. Retention of sodium and water is known to occur during surgery but the mechanisms are poorly defined. In this study, we explore how the volatile anesthetic sevoflurane influences renal function by affecting renal sympathetic nerve activity (RSNA). Our results demonstrate that sevoflurane induces renal sodium and water retention during pediatric anesthesia in association with elevated plasma concentration of renin but not arginine-vasopressin. The mechanisms are further explored in conscious and anesthetized ewes where we show that RSNA is increased by sevoflurane compared with when conscious. This is accompanied by renal sodium and water retention and decreased renal blood flow. Finally, we demonstrate that renal denervation normalizes renal excretory function and improves renal blood flow during sevoflurane anesthesia in sheep. Taken together this study describes a novel role of the renal sympathetic nerves in regulating renal function and blood flow during sevoflurane anesthesia.


Author(s):  
Fernanda Ribeiro Marins ◽  
Aline Cristina Oliveira ◽  
Fatimunnisa Qadri ◽  
Daisy Motta-Santos ◽  
Natalia Alenina ◽  
...  

Experiments aimed to evaluate the tissue distribution of Mas-related G-protein coupled receptor D (MrgD) revealed the presence of immunoreactivity for the MrgD protein in the rostral insular cortex (rIC), an important area for autonomic and cardiovascular control. In order to investigate the relevance of this finding, we evaluated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in urethane anesthetized rats. Unilateral microinjection of equimolar doses of alamandine (40pmol/100nl), angiotensin-(1-7), angiotensin II, angiotensin A and Mas/MrgD antagonist D-Pro7-Ang-1-7 (50pmol/100nl), Mas antagonist A779 (100pmol/100nl) or vehicle (0.9% NaCl) were made in different rats (N=4-6 per group) into rIC. To verify the specificity of the region, a microinjection of alamandine was also performed into intermediate insular cortex (iIC). Microinjection of alamandine in rIC produced an increase in MAP (Δ=15±2mmHg), HR (Δ=36±4bpm) and RSNA (Δ=31±4%), but was without effects at iIC. Strikingly, an equimolar dose of angiotensin-(1-7) at rIC did not produce any change in MAP, HR and RSNA. Angiotensin II and angiotensin A produced only minor effects. Alamandine effects were not altered by A-779, a Mas antagonist, but were completely blocked by the Mas/MrgD antagonist D-Pro7-Ang-(1-7). Therefore, we have identified a brain region in which alamandine/MrgD receptor but not angiotensin-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to angiotensin-(1-7) in the brain.


Hypertension ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 147-157
Author(s):  
Neeru M. Sharma ◽  
Andréa S. Haibara ◽  
Kenichi Katsurada ◽  
Shyam S. Nandi ◽  
Xuefei Liu ◽  
...  

Central infusion of Ang II (angiotensin II) has been associated with increased sympathetic outflow resulting in neurogenic hypertension. In the present study, we appraised whether the chronic increase in central Ang II activates the paraventricular nucleus of the hypothalamus (PVN) resulting in elevated sympathetic tone and altered baro- and chemoreflexes. Further, we evaluated the contribution of HIF-1α (hypoxia-inducible factor-1α), a transcription factor involved in enhancing the expression of N-methyl-D-aspartate receptors and thus glutamatergic-mediated sympathetic tone from the PVN. Ang II infusion (20 ng/minute, intracerebroventricular, 14 days) increased mean arterial pressure (126±9 versus 84±4 mm Hg), cardiac sympathetic tone (96±7 versus 75±6 bpm), and decreased cardiac parasympathetic tone (16±2 versus 36±3 versus bpm) compared with saline-infused controls in conscious rats. The Ang II-infused group also showed an impaired baroreflex control of heart rate (−1.50±0.1 versus −2.50±0.3 bpm/mm Hg), potentiation of the chemoreflex pressor response (53±7 versus 30±7 mm Hg) and increased number of FosB-labeled cells (53±3 versus 19±4) in the PVN. Concomitant with the activation of the PVN, there was an increased expression of HIF-1α and N-Methyl-D-Aspartate-type1 receptors in the PVN. Further, Ang II-infusion showed increased renal sympathetic nerve activity (20.5±2.3% versus 6.4±1.9% of Max) and 3-fold enhanced renal sympathetic nerve activity responses to microinjection of N-methyl-D-aspartate (200 pmol) into the PVN of anesthetized rats. Further, silencing of HIF-1α in NG108 cells abrogated the expression of N-methyl-D-aspartate-N-methyl-D-aspartate-type1 induced by Ang II. Taken together, our studies suggest a novel Ang II-HIF-1α-N-methyl-D-aspartate receptor-mediated activation of preautonomic neurons in the PVN, resulting in increased sympathetic outflow and alterations in baro- and chemoreflexes.


Author(s):  
Dragana Komnenov ◽  
Harrison Quaal ◽  
Noreen F. Rossi

Depression is an independent non-traditional risk factor for cardiovascular disease and mortality. The chronic unpredictable mild stress (CMS) rat model is a validated model of depression. Within the paraventricular nucleus (PVN), vasopressin (VP) via V1aR and V1bR have been implicated in stress and neurocardiovascular dysregulation. We hypothesized that in conscious, unrestrained CMS rats vs control, unstressed rats, PVN VP results in elevated arterial pressure (MAP), heart rate and renal sympathetic nerve activity (RSNA) via activation of V1aR and/or V1bR. Male rats underwent four weeks of CMS or control conditions. They were then equipped with hemodynamic telemetry transmitters, PVN cannula, and left renal nerve electrode. V1aR or V1bR antagonism dose-dependently inhibited MAP after VP injection. V1aR or V1bR blockers at their ED50 doses did not alter baseline parameters in either control or CMS rats, but attenuated the pressor response to VP microinjected into PVN by ~50%. Combined V­1aR and V1bR inhibition completely blocked the pressor response to PVN VP in control but not CMS rats. CMS rats required combined maximally inhibitory doses to block either endogenous VP within the PVN or responses to microinjected VP. Compared with unstressed control rats, CMS rats had higher plasma VP levels and greater abundance of V1aR and V1bR transcripts within PVN. Thus, the CMS rat model of depression results in higher resting MAP, heart rate and RSNA which can be mitigated by inhibition of vasopressinergic mechanisms involving both V1aR and V1bR within the PVN. Circulating VP may also play a role in the pressor response.


2020 ◽  
Vol 472 (12) ◽  
pp. 1705-1717
Author(s):  
Kristina Rodionova ◽  
Karl F. Hilgers ◽  
Eva-Maria Paulus ◽  
Gisa Tiegs ◽  
Christian Ott ◽  
...  

AbstractWe demonstrated earlier that renal afferent pathways combine very likely “classical” neural signal transduction to the central nervous system and a substance P (SP)–dependent mechanism to control sympathetic activity. SP content of afferent sensory neurons is known to mediate neurogenic inflammation upon release. We tested the hypothesis that alterations in SP-dependent mechanisms of renal innervation contribute to experimental nephritis. Nephritis was induced by OX-7 antibodies in rats, 6 days later instrumented for recording of blood pressure (BP), heart rate (HR), drug administration, and intrarenal administration (IRA) of the TRPV1 agonist capsaicin to stimulate afferent renal nerve pathways containing SP and electrodes for renal sympathetic nerve activity (RSNA). The presence of the SP receptor NK-1 on renal immune cells was assessed by FACS. IRA capsaicin decreased RSNA from 62.4 ± 5.1 to 21.6 ± 1.5 mV s (*p < 0.05) in controls, a response impaired in nephritis. Suppressed RSNA transiently but completely recovered after systemic administration of a neurokinin 1 (NK1-R) blocker. NK-1 receptors occurred mainly on CD11+ dendritic cells (DCs). An enhanced frequency of CD11c+NK1R+ cell, NK-1 receptor+ macrophages, and DCs was assessed in nephritis. Administration of the NK-1R antagonist aprepitant during nephritis reduced CD11c+NK1R+ cells, macrophage infiltration, renal expression of chemokines, and markers of sclerosis. Hence, SP promoted renal inflammation by weakening sympathoinhibitory mechanisms, while at the same time, substance SP released intrarenally from afferent nerve fibers aggravated immunological processes i.e. by the recruitment of DCs.


Sign in / Sign up

Export Citation Format

Share Document