Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria

2015 ◽  
Vol 119 (12) ◽  
pp. 1487-1493 ◽  
Author(s):  
Petra Waskova-Arnostova ◽  
Barbara Elsnicova ◽  
Dita Kasparova ◽  
Daniela Hornikova ◽  
Frantisek Kolar ◽  
...  

Chronic hypoxia increases the myocardial resistance to acute ischemia-reperfusion injury by affecting the mitochondrial redox balance. Hexokinase (HK) bears a high potential to suppress the excessive formation of reactive oxygen species because of its increased association with mitochondria, thereby inhibiting the membrane permeability transition pore opening and preventing cell death. The purpose of this study was to determine the effect of severe intermittent hypobaric hypoxia (7,000 m, 8 h/day, 5 wk) on the function and colocalization of HK isoforms with mitochondria in the left (LV) and right ventricles of rat myocardium. The real-time RT-PCR, Western blot, enzyme coupled assay, and quantitative immunofluorescence techniques were used. Our results showed significantly elevated expression of HK isoforms (HK1 and HK2) in the hypoxic LV. In addition, intermittent hypoxia increased the total HK activity and the association of HK isoforms with mitochondria in both ventricles. These findings suggest that HK may contribute to the cardioprotective phenotype induced by adaptation to severe intermittent hypobaric hypoxia.

2014 ◽  
Vol 120 (4) ◽  
pp. 870-879 ◽  
Author(s):  
Maria Muravyeva ◽  
Ines Baotic ◽  
Martin Bienengraeber ◽  
Jozef Lazar ◽  
Zeljko J. Bosnjak ◽  
...  

Abstract Background: Diabetes alters mitochondrial bioenergetics and consequently disrupts cardioprotective signaling. The authors investigated whether mitochondrial DNA (mtDNA) modulates anesthetic preconditioning (APC) and cardiac susceptibility to ischemia–reperfusion injury by using two strains of rats, both sharing nuclear genome of type 2 diabetes mellitus (T2DN) rats and having distinct mitochondrial genomes of Wistar and fawn-hooded hypertensive (FHH) rat strains (T2DNmtWistar and T2DNmtFHH, respectively). Methods: Myocardial infarct size was measured in Wistar, T2DNmtWistar, and T2DNmtFHH rats with or without APC (1.4% isoflurane) in the presence or absence of antioxidant N-acetylcysteine. Flavoprotein fluorescence intensity, a marker of mitochondrial redox state, 5-(and-6)-chloromethyl-2’,7’-dichlorofluorescein fluorescence intensity, a marker of reactive oxygen species generation, and mitochondrial permeability transition pore opening were assessed in isolated rat ventricular cardiomyocytes with or without isoflurane (0.5 mmol/l). Results: Myocardial infarct size was decreased by APC in Wistar and T2DNmtWistar rats (to 42 ± 6%, n = 8; and 44 ± 7%, n = 8; of risk area, respectively) compared with their respective controls (60 ± 3%, n = 6; and 59 ± 9%, n = 7), but not in T2DNmtFHH rats (60 ± 2%, n = 8). N-acetylcysteine applied during isoflurane treatment restored APC in T2DNmtFHH (39 ± 6%, n = 7; and 38 ± 5%, n = 7; 150 and 75 mg/kg N-acetylcysteine, respectively), but abolished protection in control rats (54 ± 8%, n = 6). Similar to the data on infarct size, APC delayed mitochondrial permeability transition pore opening in T2DNmtWistar but not in T2DNmtFHH cardiomyocytes. Isoflurane increased flavoprotein and 5-(and-6)-chloromethyl-2’,7’-dichlorofluorescein fluorescence intensity in all rat strains, with the greatest effect in T2DNmtFHH cardiomyocytes. Conclusion: Differences in the mitochondrial genome modulate isoflurane-induced generation of reactive oxygen species which translates into differential susceptibility to APC and ischemia–reperfusion injury in diabetic rats.


Sign in / Sign up

Export Citation Format

Share Document