hypobaric hypoxia
Recently Published Documents


TOTAL DOCUMENTS

1116
(FIVE YEARS 235)

H-INDEX

48
(FIVE YEARS 5)

2021 ◽  
Vol 8 ◽  
Author(s):  
Anastasia Graf ◽  
Alexander Ksenofontov ◽  
Victoria Bunik

Both hypoxia and inhibition of 2-oxoglutarate dehydrogenase complex (OGDHC) are known to change cellular amino acid pools, but the quantitative comparison of the metabolic and physiological outcomes has not been done. We hypothesize that OGDHC inhibition models metabolic changes caused by hypoxia, as both perturb the respiratory chain function, limiting either the NADH (OGDHC inhibition) or oxygen (hypoxia) supply. In the current study, we quantify the changes in the amino acid metabolism after OGDHC inhibition in the highly sensitive to hypoxia cerebellum and compare them to the earlier characterized changes after acute hypobaric hypoxia. In addition, the associated physiological effects are characterized and compared. A specific OGDHC inhibitor succinyl phosphonate (SP) is shown to act similar to hypoxia, increasing levels of many amino acids in the cerebellum of non-pregnant rats, without affecting those in the pregnant rats. Compared with hypoxia, stronger effects of SP in non-pregnant rats are observed on the levels of cerebellar amino acids, electrocardiography (ECG), and freezing time. In pregnant rats, hypoxia affects ECG and behavior more than SP, although none of the stressors significantly change the levels of cerebellar amino acids. The biochemical differences underlying the different physiological actions of SP and hypoxia are revealed by correlation analysis of the studied parameters. The negative correlations of cerebellar amino acids with OGDHC and/or tryptophan, shown to arise after the action of SP and hypoxia, discriminate the overall metabolic action of the stressors. More negative correlations are induced in the non-pregnant rats by hypoxia, and in the pregnant rats by SP. Thus, our findings indicate that the OGDHC inhibition mimics the action of acute hypobaric hypoxia on the cerebellar amino acid levels, but a better prediction of the physiological outcomes requires assessment of integral network changes, such as increases in the negative correlations among the amino acids, OGDHC, and/or tryptophan.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaqi Wan ◽  
Lu Huang ◽  
Yanmin Liu ◽  
Weizhong Ji ◽  
Changxing Li ◽  
...  

Background: Moderate hypobaric hypoxia induces cerebral ischemic tolerance. We investigated the optimal method for applying hypobaric hypoxia preconditioning at 5,000 m to ischemic brain tissue and combined it with proteomics to determine the mechanisms underlying this effect.Methods: Male SD rats were randomly grouped as S (sham, n = 20), M (middle cerebral artery occlusion [MCAO], n = 28), H2M (intermittent hypobaric hypoxia preconditioned MCAO group, 2 h/day, 10 days, n = 20), H6M (intermittent hypobaric hypoxia preconditioned MCAO group, 6 h/day, 10 days, n = 28), and HpM (persistent hypobaric hypoxia preconditioned MCAO group, 10 days, n = 28). The permanent MCAO model was established based on the Zea Longa method. Infarction was assessed with the modified neurological severity score (mNSS) and 2,3,5-triphenyl tetrazolium chloride staining. The total protein expression of the neuron-specific nuclear protein (NeuN), cysteinyl aspartate specific proteinase 3 (caspase-3), cleaved-caspase-3, and interleukin 6 (IL-6) was determined using western blotting. We assessed the peri-infarct cortex's ultrastructural changes. A label-free proteomic study and western blot verification were performed on the most effective preconditioned group.Results: The H6M group showed a lower infarct volume (p = 0.0005), lower mNSS score (p = 0.0009) than the M group. The H2M showed a lower level of IL-6 (p = 0.0213) than the M group. The caspase-3 level decreased in the H2M (p = 0.0002), H6M (p = 0.0025), and HpM groups (p = 0.0054) compared with that in the M group. Cleaved-caspase-3 expression decreased in the H2M (p = 0.0011), H6M (p < 0.0001), and HpM groups (p < 0.0001) compared with that in the M group. The neurons' ultrastructure and the blood-brain barrier in the peri-infarct tissue improved in the H2M and H6M groups. Immunofluorescence revealed increased NeuN-positive cells in the peri-infarct tissue in the H6M group (p = 0.0003, H6M vs. M). Protein expression of Chmp1a, Arpc5, and Hspa2 factors related to endocytosis were upregulated in the H6M compared with those of the M group (p < 0.05 for all) on western blot verification of label-free proteomics.Conclusions: Intermittent hypobaric hypoxia preconditioning exerts a neuroprotective effect in a rat stroke model. Persistent hypobaric hypoxia stimulation exhibited no significant neuroprotective effect. Intermittent hypoxic preconditioning for 6 h/day for 10 days upregulates key proteins in clathrin-dependent endocytosis of neurons in the cortex.


2021 ◽  
pp. 153537022110607
Author(s):  
Liyuan Zhang ◽  
Shailey Patel ◽  
Julia N Soulakova ◽  
Charles C Caldwell ◽  
Barbara St. Pierre Schneider

Tissue trauma and hemorrhagic shock are common battlefield injuries that can induce hypoxia, inflammation, and/or anemia. Inflammation and hypoxia can initiate adaptive mechanisms, such as stress erythropoiesis in the spleen, to produce red blood cells and restore the oxygen supply. In a military context, mild hypobaric hypoxia—part of the environmental milieu during aeromedical evacuation or en route care—may influence adaptive mechanisms, such as stress erythropoiesis, and host defense. In the present study, healthy (control), muscle trauma, and polytrauma (muscle trauma and hemorrhagic shock) mice were exposed to normobaric normoxia or hypobaric hypoxia for ∼17.5 h to test the hypothesis that hypobaric hypoxia exposure influences splenic erythropoiesis and splenic inflammation after polytrauma. This hypothesis was partially supported. The polytrauma + hypobaric hypoxia group exhibited more splenic neutrophils, fewer total spleen cells, and fewer splenic proliferating cells than the polytrauma+normobaric normoxia group; however, no splenic erythroid cell differences were detected between the two polytrauma groups. We also compared splenic erythropoiesis and myeloid cell numbers among control, muscle trauma, and polytrauma groups. More reticulocytes at 1.7 days (40 h) post-trauma (dpt) and neutrophils at 4 dpt were produced in the muscle trauma mice than corresponding control mice. In contrast to muscle trauma, polytrauma led to a reduced red blood cell count and elevated serum erythropoietin levels at 1.7 dpt. There were more erythroid subsets and apoptotic reticulocytes in the polytrauma mice than muscle trauma mice at 4 and 8 dpt. At 14 dpt, the red blood cell count of the polytrauma + normobaric normoxia mice was 12% lower than that of the control + normobaric normoxia mice; however, no difference was observed between polytrauma + hypobaric hypoxia and control + hypobaric hypoxia mice. Our findings suggest muscle trauma alone induces stress erythropoiesis; in a polytrauma model, hypobaric hypoxia exposure may result in the dysregulation of splenic cells, requiring a treatment plan to ensure adequate immune functioning.


2021 ◽  
Vol 15 ◽  
Author(s):  
Valérian Tanner ◽  
Raphael Faiss ◽  
Jonas Saugy ◽  
Nicolas Bourdillon ◽  
Laurent Schmitt ◽  
...  

Purpose: This study aimed to investigate the differences between normobaric (NH) and hypobaric hypoxia (HH) on supine heart rate variability (HRV) during a 24-h exposure. We hypothesized a greater decrease in parasympathetic-related parameters in HH than in NH.Methods: A pooling of original data from forty-one healthy lowland trained men was analyzed. They were exposed to altitude either in NH (FIO2 = 15.7 ± 2.0%; PB = 698 ± 25 mmHg) or HH (FIO2 = 20.9%; PB = 534 ± 42 mmHg) in a randomized order. Pulse oximeter oxygen saturation (SpO2), heart rate (HR), and supine HRV were measured during a 7-min rest period three times: before (in normobaric normoxia, NN), after 12 (H12), and 24 h (H24) of either NH or HH exposure. HRV parameters were analyzed for time- and frequency-domains.Results: SpO2 was lower in both hypoxic conditions than in NN and was higher in NH than HH at H24. Subjects showed similarly higher HR during both hypoxic conditions than in NN. No difference in HRV parameters was found between NH and HH at any time. The natural logarithm of root mean square of the successive differences (LnRMSSD) and the high frequency spectral power (HF), which reflect parasympathetic activity, decreased similarly in NH and HH when compared to NN.Conclusion: Despite SpO2 differences, changes in supine HRV parameters during 24-h exposure were similar between NH and HH conditions indicating a similar decrease in parasympathetic activity. Therefore, HRV can be analyzed similarly in NH and HH conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alejandro Gonzalez-Candia ◽  
Emilio A. Herrera

An estimated human population of 170 million inhabit at high-altitude (HA, above 2,500 m). The potential pathological effects of HA hypobaric hypoxia during gestation have been the focus of several researchers around the world. The studies based on the Himalayan and Central/South American mountains are particularly interesting as these areas account for nearly 70% of the HA world population. At present, studies in human and animal models revealed important alterations in fetal development and growth at HA. Moreover, vascular responses to chronic hypobaria in the pregnant mother and her fetus may induce marked cardiovascular impairments during pregnancy or in the neonatal period. In addition, recent studies have shown potential long-lasting postnatal effects that may increase cardiovascular risk in individuals gestated under chronic hypobaria. Hence, the maternal and fetal adaptive responses to hypoxia, influenced by HA ancestry, are vital for a better developmental and cardiovascular outcome of the offspring. This mini-review exposes and discusses the main determinants of vascular dysfunction due to developmental hypoxia at HA, such as the Andean Mountains, at the maternal and fetal/neonatal levels. Although significant advances have been made from Latin American studies, this area still needs further investigations to reveal the mechanisms involved in vascular dysfunction, to estimate complications of pregnancy and postnatal life adequately, and most importantly, to determine potential treatments to prevent or treat the pathological effects of being developed under chronic hypobaric hypoxia.


2021 ◽  
Vol 177 ◽  
pp. S101-S102
Author(s):  
Sergio Sánchez-Nuño ◽  
Garoa Santocildes ◽  
Raquel G. Bardallo ◽  
Joan Ramón Torrella ◽  
Teresa Carbonell ◽  
...  

2021 ◽  
Vol 17 (4) ◽  
pp. 1-5
Author(s):  
Micaela Tobler ◽  
Christos T. Nakas ◽  
Matthias P. Hilty ◽  
Andreas Huber ◽  
Tobias Merz ◽  
...  

Introduction: Changes in blood coagulation during exposure to high altitude are not well understood and studies of activation and consumption of specific coagula-tion factors in hypoxic humans have yielded conflicting results. In this study we used thrombelastometry (TEM) which allows a global evaluation of clot formation and lysis process to study blood coagulation profiles in volunteers exposed to pro-longed hypobaric hypoxia at extreme altitudes. Material and methods: We conducted a prospective, observational study in 39 healthy volunteers during a research expedition up to an altitude of 7050 m. Plasma based thrombelastometric measurements and standard coagulation parameters were performed at different altitudes. Results: TEM measurements showed an increase in clotting time (CT) and maxi-mum clot firmness (MCF) at high altitudes, paralleled by an increase in international normalized ratio (INR) and activated partial thromboplastin time (aPTT). Fibrinogen concentration increased until 6022 m. D-Dimer and Thrombin-Antithrombin complex (TAT) increased with time exposed to severe hypoxia. For both measurements highest levels were found at 4844 m after acclimatization; in contrast, lower values were observed again at 7050m in the group of summiteers. Activated protein C resistance (APC-R) was slightly lowered at all altitudes. Conclusion: Our results suggest that activation of the coagulation and fibrinolytic system occurs with increasing hypobaric hypoxia with concurrent use of coagula-tion factors indicating the occurrence of a consumption-coagulopathy phenotype.


2021 ◽  
Vol 65 ◽  
pp. 81-85
Author(s):  
S Kasture ◽  
MS Nataraja ◽  
SS Mohapatra ◽  
B Sinha

Introduction: Hypoxia, often referred to as “silent killer,” a common aeromedical stressor in aviation, may have catastrophic events in-flight unless recognized well in time. On exposure to hypoxia, an individual manifests a specific spectrum of symptoms referred to as “hypoxia signature.” The present study was conducted to assess the manifestation of “hypoxia signature” on repeated exposure to simulated hypobaric hypoxia for its potential usage as a tool for hypoxia recognition. Material and Methods: Twenty-two healthy adult volunteers were subjected to a simulated altitude of 22,000 feet for a duration of 5 min in the hypobaric altitude chamber. The symptoms experienced by the participants at the said altitude were recorded using a questionnaire. The heart rate (HR) and oxygen saturation (SpO2) were recorded during the exposure. The hypoxia exposure was repeated two more times with a minimum interval of 3 weeks between each. Paired t-test was used to compare the mean values of physiological parameters (HR and SpO2) between ground level and 22000 feet recorded in all the three exposures. The hypoxia symptoms and their severity reported during the exposures were compared with those of recalled symptoms (reported after 3 weeks of exposure) using McNemar test and Wilcoxon Signed Rank test, respectively. Results: Paired t-test revealed a statistically significant increase in HR and fall in SpO2 with rise in altitude from ground level to 22000 feet. The three most common symptoms consistently observed were lightheadedness, thinking slow, and warm feeling. The common hypoxic symptoms and their severity scores reported at 22,000 feet compared with recalled counterpart during subsequent exposures did not reveal any significant differences (P > 0.05). Conclusion: There was a high degree of similarity in the frequency and severity score of symptoms between acute exposure to hypobaric hypoxia and recall indicating evidence of repeatability of symptoms across the three sessions of hypoxia exposure within the individuals. This brings out the usefulness of “hypoxia signature” as a tool for hypoxia recognition and its application in hypoxia indoctrination and training for aircrew.


Author(s):  
Dongmei ZHANG ◽  
Qilu CAO ◽  
Linlin JING ◽  
Xiuhua ZHAO ◽  
Huiping MA

Sign in / Sign up

Export Citation Format

Share Document