ginsenoside rb1
Recently Published Documents


TOTAL DOCUMENTS

559
(FIVE YEARS 66)

H-INDEX

49
(FIVE YEARS 0)

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
YanWei Li ◽  
Feng He ◽  
Yu Zhang ◽  
ZhanYu Pan

Background. Apatinib is an anticancer drug known to inhibit the vascular endothelial growth factor receptor-2 (VEGFR-2) through regulating tyrosine kinases. Drug resistance and reduced activity in various cancers is the matter of great concern; thus, researchers opt to use combination of the two or more drugs. So far, its gynergetic anticancer role with a traditional Chinese drug Ginsenoside-Rb1 (G-Rb1) has not been studied in cancers including hypopharyngeal carcinoma. Objective. The current study is aimed at investigating the anticancer synergetic effects of G-Rb1 and apatinib in hypopharyngeal carcinoma. Methods. The synergetic effects of both drugs on cell proliferation, wound healing and cell migration, and cell apoptosis were studied in hypopharyngeal carcinoma cells. Furthermore, the xenograft rat model was generated, and tumor inhibition was monitored after treating rats with both drugs as mono- and combination therapy. In addition, protein expression and localization were performed by western blotting and immunofluorescent staining, respectively. Results. The analyses of the data showed that combination therapy of apatinib and G-Rb1 significantly inhibited the proliferation, migration, and wound healing capability of hypopharyngeal carcinoma cells. Moreover, the glycolysis rate of the cells in the combination therapy (apatinib and G-Rb1) group was significantly decreased as compared to that in the monotherapy group or no treatment group, suggesting that the glycolysis inhibition led to the inhibition of tumor growth. Moreover, the combination therapy on xenograft rats dramatically reduced the tumor size. Furthermore, combination therapy also exhibited an increased count of CD3+ and CD4+ T cells, as well as the ratio between CD4+ and CD8+ T cells. Conclusion. Interestingly, a combination of apatinib and G-Rb1 induced more tumor cell apoptosis and reduced cell proliferation than the individual drug treatment and promote antitumor immunity by enhancing immunomodulatory molecules. Thus, we believe that this study could serve as a valuable platform to assess the synergetic anticancer effects of the herbal as well as synthetic medicines.



2022 ◽  
Vol 12 ◽  
Author(s):  
Hulinyue Peng ◽  
Longtai You ◽  
Chunjing Yang ◽  
Kaixin Wang ◽  
Manting Liu ◽  
...  

Triptolide (TP) is the major bioactive compound extracted from Tripterygium wilfordii Hook F. It exerts anti-inflammatory, antirheumatic, antineoplastic, and neuroprotective effects. However, the severe hepatotoxicity induced by TP limits its clinical application. Ginsenoside Rb1 has been reported to possess potential hepatoprotective effects, but its mechanism has not been fully investigated. This study was aimed at investigating the effect of ginsenoside Rb1 against TP-induced cytotoxicity in HL-7702 cells, as well as the underlying mechanism. The results revealed that ginsenoside Rb1 effectively reversed TP-induced cytotoxicity in HL-7702 cells. Apoptosis induced by TP was suppressed by ginsenoside Rb1 via inhibition of death receptor-mediated apoptotic pathway and mitochondrial-dependent apoptotic pathway. Pretreatment with ginsenoside Rb1 significantly reduced Bax/Bcl-2 ratio and down-regulated the expression of Fas, cleaved poly ADP-ribose polymerase (PARP), cleaved caspase-3, and -9. Furthermore, ginsenoside Rb1 reversed TP-induced cell cycle arrest in HL-7702 cells at S and G2/M phase, via upregulation of the expressions of cyclin-dependent kinase 2 (CDK2), cyclin E, cyclin A, and downregulation of the expressions of p53, p21, and p-p53. Ginsenoside Rb1 increased glutathione (GSH) and superoxide dismutase (SOD) levels, but decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Pretreatment with ginsenoside Rb1 enhanced the expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), total Nrf2, NAD(P)H: quinone oxidoreductases-1 (NQO-1), heme oxygenase-1 (HO-1), and Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 complex. Therefore, ginsenoside Rb1 effectively alleviates TP-induced cytotoxicity in HL-7702 cells through activation of the Keap1/Nrf2/ARE antioxidant pathway.



2022 ◽  
Vol Volume 15 ◽  
pp. 71-83
Author(s):  
Chenyang Zhang ◽  
Meixin Han ◽  
Xuelian Zhang ◽  
Hongna Tong ◽  
Xiaobo Sun ◽  
...  


2021 ◽  
Vol 20 (4) ◽  
pp. 813-823
Author(s):  
Huiming Zhang ◽  
Xue Chen ◽  
Xi Wang ◽  
Ying Liu ◽  
Charles. D. Sands ◽  
...  




2021 ◽  
Vol 12 ◽  
Author(s):  
Xueyuan Yang ◽  
Bangjian Dong ◽  
Lijun An ◽  
Qi Zhang ◽  
Yao Chen ◽  
...  

Accumulating evidences suggested an association between gut microbiome dysbiosis and impaired glycemic control. Ginsenoside Rb1 (Rb1) is a biologically active substance of ginseng, which serves anti-diabetic effects. However, its working mechanism especially interaction with gut microbes remains elusive in detail. In this study, we investigated the impact of Rb1 oral supplementation on high fat diet (HFD) induced obesity mice, and explored its mechanism in regulating blood glucose. The results showed that higher liver weight and lower cecum weight were observed in HFD fed mice, which was maintained by Rb1 administration. In addition, Rb1 ameliorated HFD induced blood lipid abnormality and improved insulin sensitivity. Several mRNA expressions in the liver were measured by quantitative real-time PCR, of which UCP2, Nr1H4, and Fiaf were reversed by Rb1 treatment. 16S rRNA sequencing analysis indicated that Rb1 significantly altered gut microbiota composition and increased the abundance of mucin-degrading bacterium Akkermansia spp. compared to HFD mice. As suggested via functional prediction, amino acid metabolism was modulated by Rb1 supplementation. Subsequent serum amino acids investigation indicated that several diabetes associated amino acids, like branched-chain amino acids, tryptophan and alanine, were altered in company with Rb1 supplementation. Moreover, correlation analysis firstly implied that the circulation level of alanine was related to Akkermansia spp.. In summary, Rb1 supplementation improved HFD induced insulin resistance in mice, and was associated with profound changes in microbial composition and amino acid metabolism.



Author(s):  
Jianing Lu ◽  
Jing Lu ◽  
Xiujuan Bu ◽  
Yazhuo Li ◽  
Guangcai Ge ◽  
...  


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7089
Author(s):  
Aftab Shaukat ◽  
Irfan Shaukat ◽  
Shahid Ali Rajput ◽  
Rizwan Shukat ◽  
Sana Hanif ◽  
...  

Endometritis is the inflammatory response of the endometrial lining of the uterus and is associated with low conception rates, early embryonic mortality, and prolonged inter-calving intervals, and thus poses huge economic losses to the dairy industry worldwide. Ginsenoside Rb1 (GnRb1) is a natural compound obtained from the roots of Panax ginseng, having several pharmacological and biological properties. However, the anti-inflammatory properties of GnRb1 in lipopolysaccharide (LPS)-challenged endometritis through the TLR4-mediated NF-κB signaling pathway has not yet been researched. This study was planned to evaluate the mechanisms of how GnRb1 rescues LPS-induced endometritis. In the present research, histopathological findings revealed that GnRb1 ameliorated LPS-triggered uterine injury. The ELISA and RT-qPCR assay findings indicated that GnRb1 suppressed the expression level of pro-inflammatory molecules (TNF-α, IL-1β and IL-6) and boosted the level of anti-inflammatory (IL-10) cytokine. Furthermore, the molecular study suggested that GnRb1 attenuated TLR4-mediated NF-κB signaling. The results demonstrated the therapeutic efficacy of GnRb1 in the mouse model of LPS-triggered endometritis via the inhibition of the TLR4-associated NF-κB pathway. Taken together, this study provides a baseline for the protective effect of GnRb1 to treat endometritis in both humans and animals.



Sign in / Sign up

Export Citation Format

Share Document