Functional Organization of Speed Tuned Neurons in Visual Area MT

2003 ◽  
Vol 89 (1) ◽  
pp. 246-256 ◽  
Author(s):  
Jing Liu ◽  
William T. Newsome

We analyzed the functional organization of speed tuned neurons in extrastriate visual area MT. We sought to determine whether neurons tuned for particular speeds are clustered spatially and whether such spatial clusters are elongated normal to the cortical surface so as to form speed columns. Our data showed that MT neurons are indeed clustered according to preferred speed. Multiunit recordings were speed tuned, and the speed tuning of these signals was well correlated with the speed tuning of single neurons recorded simultaneously. To determine whether speed columns exist in MT, we compared the rates at which preferred speed changed in electrode tracks that traversed MT obliquely and normally to the cortical surface. If speed columns exist, the preferred speed should change at a faster rate during oblique electrode tracks. We found, however, that preferred speed changed at similar rates for either type of penetration. In the same data set, the rate of change of preferred direction and preferred disparity differed substantially in normal and oblique penetrations as expected from the known columnar organization of MT. Thus our results suggest that a columnar organization for speed tuned neurons does not exist in MT.

1984 ◽  
Vol 51 (1) ◽  
pp. 16-31 ◽  
Author(s):  
T. D. Albright ◽  
R. Desimone ◽  
C. G. Gross

We recorded from single neurons in visual area MT of the macaque in order to examine the spatial distribution of its directionally selective cells. The animals were paralyzed and anesthetized with nitrous oxide. All MT neurons (n = 614) responded better to moving stimuli than to stationary stimuli. For 55% of the neurons, responses to moving stimuli were independent of stimulus color, shape, length, or orientation. For the remaining cells, stimulus length affected the response magnitude and tuning bandwidth but not the preferred direction. MT neurons were divided into four categories on the basis of their sensitivity to moving stimuli: 60% responded exclusively to one direction of motion, 24% responded best to one direction with a weaker response in the opposite direction, 8% responded equally well to two opposite directions of motion, and 8% responded equally well to all directions of motion. The direction preferences of successively sampled cells on a penetration either changed by small increments or occasionally by approximately 180 degrees. Thus, there is a systematic representation of direction of motion. The representation of axis of motion, i.e., the orientation of the path along which a stimulus moves, is more continuous than the representation of direction of motion. There was a systematic relationship between penetration angle and rate of change of preferred axis of motion, indicating that cells with a similar axis of motion preference are arranged in vertical columns. Furthermore, axis of motion columns appear to exist in the form of continuous slabs in area MT. The size of these slabs is such that 180 degrees of axis of motion are represented in 400-500 micron of cortex. There was also a systematic relationship between penetration angle and frequency of 180 degrees reversals, indicating that cells with a similar direction of motion preference are also organized in vertical columns and cells with opposite direction preferences are located in adjacent columns within a single axis of motion column. Just as in macaque striate cortex where approximately 500 micron of cortex contain the mechanism for the local analysis of stimulus orientation, so in MT approximately 500 micron of cortex contain the mechanism for the local analysis of stimulus motion.


1984 ◽  
Vol 52 (3) ◽  
pp. 488-513 ◽  
Author(s):  
D. J. Felleman ◽  
J. H. Kaas

Response properties of single neurons in the middle temporal visual area (MT) of anesthetized owl monkeys were determined and quantified for flashed and moving bars of light under computer control for position, orientation, direction of movement, and speed. Receptive-field sizes, ranging from 4 to 25 degrees in width, were considerably larger than receptive fields with corresponding eccentricities in the striate cortex. Neurons were highly binocular with most cells equally or nearly equally activated by either eye. Neurons varied in selectivity for axis and direction of moving bars. Some neurons demonstrated little or no selectivity, others were bidirectional on a single axis, while the largest group was highly selective for direction with little or no response to bar movement opposite to the preferred direction. Over 70% of neurons were classified as highly selective and 90% showed some preference for direction and/or axis of stimulus movement. Neurons typically responded to bar movement only over a restricted range of velocities. The majority of neurons responded best to a particular velocity within the 5-60 degrees/s range, with marked attenuation of the response for velocities greater or less than the preferred. Some neurons failed to show significant response attenuation even at the lowest tested velocity, while other neurons preferred velocities of 100 degrees/s or more and failed to attenuate to the highest velocities. Response magnitude varied with stimulus dimensions. Increasing the length of the moving bar typically increased the magnitude of the response slightly until the stimulus exceeded the receptive-field borders. Other neurons responded less to increases in bar length within the excitatory receptive field. Neurons preferred narrow bars less than 1 degree in width, and marked reductions in responses characteristically occurred with wider stimuli. Moving patterns of randomly placed small dots were often as effective as or more effective than single bars in activating neurons. Selectivity for direction of movement remained for the dot pattern. for the dot pattern. Poststimulus time (PST) histograms of responses to bars flashed at a series of 21 different positions across the receptive field, in the "response-plane" format, indicated a spatially and temporally homogeneous receptive-field structure for nearly all neurons. Cells characteristically showed transient excitation at both stimulus onset and offset for all effective stimulus locations. Some cells responded mainly at bright stimulus onset or offset.


Perception ◽  
1985 ◽  
Vol 14 (2) ◽  
pp. 105-126 ◽  
Author(s):  
John Allman ◽  
Francis Miezin ◽  
EveLynn McGuinness

The true receptive field of more than 90% of neurons in the middle temporal visual area (MT) extends well beyond the classical receptive field (crf), as mapped with conventional bar or spot stimuli, and includes a surrounding region that is 50 to 100 times the area of the crf. These extensive surrounds are demonstrated by simultaneously stimulating the crf and the surround with moving stimuli. The surrounds commonly have directional and velocity-selective influences that are antagonistic to the response from the crf. The crfs of MT neurons are organized in a topographic representation of the visual field. Thus MT neurons are embedded in an orderly visuotopic array, but are capable of integrating local stimulus conditions within a global context. The extensive surrounds of MT neurons may be involved in figure–ground discrimination, preattentive vision, perceptual constancies, and depth perception through motion cues.


1984 ◽  
Vol 52 (6) ◽  
pp. 1106-1130 ◽  
Author(s):  
T. D. Albright

We recorded from single neurons in the middle temporal visual area (MT) of the macaque monkey and studied their direction and orientation selectivity. We also recorded from single striate cortex (V1) neurons in order to make direct comparisons with our observations in area MT. All animals were immobilized and anesthetized with nitrous oxide. Direction selectivity of 110 MT neurons was studied with three types of moving stimuli: slits, single spots, and random-dot fields. All of the MT neurons were found to be directionally selective using one or more of these stimuli. MT neurons exhibited a broad range of direction-tuning bandwidths to all stimuli (minimum = 32 degrees, maximum = 186 degrees, mean = 95 degrees). On average, responses were strongly unidirectional and of similar magnitude for all three stimulus types. Orientation selectivity of 89 MT neurons was studied with stationary flashed slits. Eighty-three percent were found to be orientation selective. Overall, orientation-tuning bandwidths were significantly narrower (mean = 64 degrees) than direction-tuning bandwidths for moving stimuli. Moreover, responses to stationary-oriented stimuli were generally smaller than those to moving stimuli. Direction selectivity of 55 V1 neurons was studied with moving slits; orientation selectivity of 52 V1 neurons was studied with stationary flashed slits. In V1, compared with MT, direction-tuning bandwidths were narrower (mean = 68 degrees). Moreover, V1 responses to moving stimuli were weaker, and bidirectional tuning was more common. The mean orientation-tuning bandwidth in V1 was also significantly narrower than that in MT (mean = 52 degrees), but the responses to stationary-oriented stimuli were of similar magnitude in the two areas. We examined the relationship between optimal direction and optimal orientation for MT neurons and found that 61% had an orientation preference nearly perpendicular to the preferred direction of motion, as is the case for all V1 neurons. However, another 29% of MT neurons had an orientation preference roughly parallel to the preferred direction. These observations, when considered together with recent reports claiming sensitivity of some MT neurons to moving visual patterns (39), suggest specific neural mechanisms underlying pattern-motion sensitivity in area MT. These results support the notion that area MT represents a further specialization over area V1 for stimulus motion processing. Furthermore, the marked similarities between direction and orientation tuning in area MT in macaque and owl monkey support the suggestion that these areas are homologues.


1992 ◽  
Vol 9 (3-4) ◽  
pp. 399-407 ◽  
Author(s):  
Jon H. Kaas ◽  
Leah A. Krubitzer

AbstractThe middle temporal visual area, MT, is one of three major targets of the primary visual cortex, area 17, in primates. We assessed the contribution of area 17 connections to the responsiveness of area MT neurons to visual stimuli by first mapping the representation of the visual hemifield in MT of anesthetized owl monkeys with microelectrodes, ablating an electrophysiologically mapped part of area 17, and then immediately remapping MT. Before the lesions, neurons at recording sites throughout MT responded vigorously to moving slits of light and other visual stimuli. In addition, the relationship of receptive fields to recording sites revealed a systematic representation of the contralateral visual hemifield in MT, as reported previously for owl monkeys and other primates. The immediate effect of removing part of the retinotopic map in area 17 by gentle aspiration was to selectively deactivate the corresponding part of the visuotopic map in MT. Lesions of dorsomedial area 17 representing central and paracentral vision of the lower visual quadrant deactivated neurons in caudomedial MT formerly having receptive fields in the central and paracentral lower visual quadrant. Most neurons at recording sites throughout other parts of MT had normal levels of responsiveness to visual stimuli, and receptive-field locations that closely matched those before the lesion. However, neurons at a few sites along the margin of the deactivated zone of cortex had receptive fields that were slightly displaced from the region of vision affected by the lesion into other parts of the visual field, suggesting some degree of plasticity in the visual hemifield representation in MT. Subsequent histological examination of cortex confirmed that the lesions were confined to area 17 and the recordings were in MT. The results indicate that the visually evoked activity of neurons in MT of owl monkeys is highly dependent on inputs relayed directly or indirectly from area 17.


1992 ◽  
Vol 67 (6) ◽  
pp. 1437-1446 ◽  
Author(s):  
P. Girard ◽  
P. A. Salin ◽  
J. Bullier

1. Behavioral results in the monkey and clinical studies in human show remarkable residual visual capacities after a lesion of area V1. Earlier work by Rodman et al. demonstrated that visual activity can be recorded in the middle temporal area (MT) of the macaque monkey several weeks after a complete lesion of V1. These authors also tested the effect of a reversible block of area V1 on the visual responses of a small number of neurons in area MT and showed that most of these cells remain visually responsive. From the results of that study, however, it is difficult to assess the contribution of area 17 to the receptive-field selectivity of area MT neurons. To address this question, we have quantitatively measured the effects of a reversible inactivation of area 17 on the direction selectivity of MT neurons. 2. A circular part of the opercular region of area V1 was reversibly inactivated by cooling with a Peltier device. A microelectrode was positioned in the lower layers of V1 to control the total inactivation of that area. Eighty percent of the sites recorded in the retinotopically corresponding region of MT during inactivation of V1 were found to be visually responsive. The importance of the effect was assessed by calculating the blocking index (0 for no effect, 1 for complete inactivation). Approximately one-half of the quantitatively studied neurons gave a blocking index below 0.6, illustrating the strong residual responses recorded in many neurons. 3. Receptive-field properties were examined with multihistograms. It was found that, during inactivation of V1, the preferred direction changed for most neurons but remained close to the preferred direction or to its opposite in the control situation. During inactivation of V1, the average tuning curve of neurons became broader mostly because of strong reductions in the response to directions close to the preferred and nonpreferred. Very little change was observed in the responses for directions at 90 degrees to the optimal. These results are consistent with a model in which direction selectivity is present without an input from V1 but is reinforced by the spatial organization of this excitatory input. 4. Residual responses were found to be highly dependent on the state of anesthesia because they were completely abolished by the addition of 0.4-0.5% halothane to the ventilation gases. Finally, visual responses were recorded in area MT several hours after an acute lesion of area 17.(ABSTRACT TRUNCATED AT 400 WORDS)


1973 ◽  
Vol 57 (1) ◽  
pp. 197-202 ◽  
Author(s):  
J.M. Allman ◽  
J.H. Kaas ◽  
R.H. Lane

Sign in / Sign up

Export Citation Format

Share Document