local analysis
Recently Published Documents


TOTAL DOCUMENTS

755
(FIVE YEARS 145)

H-INDEX

35
(FIVE YEARS 3)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 127
Author(s):  
Brian P. Reen ◽  
Huaqing Cai ◽  
Robert E. Dumais ◽  
Yuanfu Xie ◽  
Steve Albers ◽  
...  

The combination of techniques that incorporate observational data may improve numerical weather prediction forecasts; thus, in this study, the methodology and potential value of one such combination were investigated. A series of experiments on a single case day was used to explore a 3DVAR-based technique (the variational version of the Local Analysis and Prediction System; vLAPS) in combination with Newtonian relaxation (observation and analysis nudging) for simulating moist convection in the Advanced Research version of the Weather Research and Forecasting model. Experiments were carried out with various combinations of vLAPS and nudging for a series of forecast start times. A limited subjective analysis of reflectivity suggested all experiments generally performed similarly in reproducing the overall convective structures. Objective verification indicated that applying vLAPS analyses without nudging performs best during the 0–2 h forecast in terms of placement of moist convection but worst in the 3–5 h forecast and quickly develops the most substantial overforecast bias. The analyses used for analysis nudging were at much finer temporal and spatial scales than usually used in pre-forecast analysis nudging, and the results suggest that further research is needed on how to best apply analysis nudging of analyses at these scales.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8566
Author(s):  
Edoardo De Renzis ◽  
Valerio Mariani ◽  
Gian Marco Bianchi ◽  
Giulio Cazzoli ◽  
Stefania Falfari ◽  
...  

Nowadays reducing green-house gas emissions and pushing the fossil fuel savings in the field of light-duty vehicles is compulsory to slow down climate change. To this aim, the use of new combustion modes and dilution strategies to increase the stability of operations rich in diluent is an effective technique to reduce combustion temperatures and heat losses in throttled operations. Since the combustion behavior in those solutions highly differs from that of typical market systems, fundamental analyses in optical engines are mandatory in order to gain a deep understanding of those and to tune new models for improving the mutual support between experiments and simulations. However, it is known that optical accessible engines suffer from significant blow-by collateral flow due to the installation of the optical measure line. Thus, a reliable custom blow-by model capable of being integrated with both mono-dimensional and three-dimensional simulations was developed and validated against experimental data. The model can work for two different configurations: (a) stand-alone, aiming at providing macroscopic data on the ignitable mixture mass loss/recover through the piston rings; (b) combined, in which it is integrated in CFD engine simulations for the local analysis of likely collateral heat release induced by blow-by. Furthermore, once the model was validated, the effect of the engine speed and charge dilution on the blow-by phenomenon in the optical engine were simulated and discussed in the stand-alone mode.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3119
Author(s):  
Sameh Askar ◽  
Abdulaziz Foul ◽  
Tarek Mahrous ◽  
Saleh Djemele ◽  
Emad Ibrahim

In this paper, a Cournot game with two competing firms is studied. The two competing firms seek the optimality of their quantities by maximizing two different objective functions. The first firm wants to maximize an average of social welfare and profit, while the second firm wants to maximize their relative profit only. We assume that both firms are rational, adopting a bounded rationality mechanism for updating their production outputs. A two-dimensional discrete time map is introduced to analyze the evolution of the game. The map has four equilibrium points and their stability conditions are investigated. We prove the Nash equilibrium point can be destabilized through flip bifurcation only. The obtained results show that the manifold of the game’s map can be analyzed through a one-dimensional map whose analytical form is similar to the well-known logistic map. The critical curves investigations show that the phase plane of game’s map is divided into three zones and, therefore, the map is not invertible. Finally, the contact bifurcation phenomena are discussed using simulation.


2021 ◽  
Vol 11 (23) ◽  
pp. 11165
Author(s):  
Pamela Franco ◽  
Julio Sotelo ◽  
Cristian Montalba ◽  
Bram Ruijsink ◽  
Eric Kerfoot ◽  
...  

In this paper, we applied a method for quantifying several left intraventricular hemodynamic parameters from 4D Flow data and its application in a proof-of-concept study in dilated cardiomyopathy (DCM) patients. In total, 12 healthy volunteers and 13 DCM patients under treatment underwent short-axis cine b-SSFP and 4D Flow MRI. Following 3D segmentation of the left ventricular (LV) cavity and registration of both sequences, several hemodynamic parameters were calculated at peak systole, e-wave, and end-diastole using a finite element approach. Sensitivity, inter- and intra-observer reproducibility of hemodynamic parameters were evaluated by analyzing LV segmentation. A local analysis was performed by dividing the LV cavity into 16 regions. We found significant differences between volunteers and patients in velocity, vorticity, viscous dissipation, energy loss, and kinetic energy at peak systole and e-wave. Furthermore, although five patients showed a recovered ejection fraction after treatment, their hemodynamic parameters remained low. We obtained several hemodynamic parameters with high inter- and intra-observer reproducibility. The sensitivity study revealed that hemodynamic parameters showed a higher accuracy when the segmentation underestimates the LV volumes. Our approach was able to identify abnormal flow patterns in DCM patients compared to volunteers and can be applied to any other cardiovascular diseases.


Author(s):  
Dang-Bao Tran ◽  
Jaroslav Navrátil

This paper presents the use of a finite element method (FEM) to analyze the shear lag effect due to the flexure of beams with an arbitrary cross-section and homogeneous elastic material. Beams are constrained by the most common types of supports, such as fixed, pinned, and roller. The transverse, concentrated, or distributed loads act on the beams through the shear center of the cross-section. The presented FEM transforms the 3D analysis of the shear lag phenomenon into separated 2D cross-sectional and 1D beam modeling. The characteristics of the cross-section are firstly derived from 2D FEM, which uses a 9-node isoparametric element. Then, a 1D FEM, which uses a linear isoparametric element, is developed to compute the deflection, rotation angle, bending warping parameter, and stress resultants. Finally, the stress field is obtained from the local analysis on the 2D-cross section. A MATLAB program is executed to validate the numerical method. The validation examples have proven the efficiency and reliability of the numerical method for analyzing shear lag flexure, which is a common problem in structural design.


2021 ◽  
Vol 9 (11) ◽  
pp. 1230
Author(s):  
Min Roh ◽  
Nary La ◽  
Sang-Myeong Oh ◽  
Kiryong Kang ◽  
Youjung Oh ◽  
...  

In this study, we constructed a rapid refresh wave forecast model using sea winds from the Korea Local Analysis and Prediction System as input forcing data. The model evaluated the changes in forecast performance considering the influence of input wind–wave interaction, which is an important factor that determines forecast performance. The forecast performance was evaluated by comparing the forecast results of the wave model with the significant wave height, wave period, and wave direction provided by moored buoy observations. During the typhoon season, the model tended to underestimate the conditions, and the root mean square error (RMSE) was reduced by increasing the wind and wave interaction parameter. The best value of the interaction parameter that minimizes the RMSE was determined based on the results of the numerical experiments performed during the typhoon season. The forecast error in the typhoon season was higher than that observed in the analysis results of the non-typhoon season. This can be attributed to the variations of the wave energy caused by the relatively strong typhoon wind field considered in the wave model.


Author(s):  
Joar Zhou Hagström ◽  
Agnès Maurel ◽  
Kim Pham

We study theoretically and numerically the occurrence of Fano resonances in a metagrating made of slits with some symmetry breaking resulting in a dual period. At low frequency, a grating composed of long enough slits supports Fabry–Pérot resonances on which Fano resonances superimpose when the grating acquires dual period. The resulting spectrum exhibits flat-banded peaks interrupted by sharp dips with successions of perfect and zero transmissions. To model these scattering properties, homogenization theory is used resulting in an effective problem governing the solutions in the two, non-identical, slits, which are coupled through jump conditions at the grating interfaces. These jumps efficiently encode the effect of the evanescent field able to resonate in the radiative region due to the folding of the spoof plasmon polaritons branches. The model is validated with direct numerics and a local analysis allows us to characterize the resonant mechanisms.


2021 ◽  
pp. injuryprev-2021-044396
Author(s):  
Cheuk Yui Yeung ◽  
Yu Men ◽  
Yu-Chih Chen ◽  
Paul Siu Fai Yip

IntroductionThere has been little research into at-home suicide cases globally, and particularly in Asian regions. This study aimed to investigate the differences in characteristics between suicide cases in Hong Kong that occurred at home and elsewhere; identify at-home suicide hotspots in the community and compare the differences in area-level characteristics between suicide hotspots and other areas.MethodsSuicide cases (2013–2017) were identified from Hong Kong Coroner’s Court reports. Area-level socioeconomic data were retrieved from the 2016 Hong Kong census. Wilcoxon signed-rank tests, χ2 tests and multiple logistic regression models were applied to compare differences in characteristics between people committing suicide at home and elsewhere. Global hotspot tests (Moran’s I and Getis-Ord General G) and local analysis (Getis-Ord Gi*) identified at-home suicide community hotspots. The Wilcoxon signed-rank test was used to compare differences in area-level characteristics between at-home suicide hotspots and non-hotspots.ResultsAbout 60% of suicide cases in Hong Kong occurred at home. Being female, widowed and/or living alone were significant predictors of at-home suicide cases. A U-shaped association between age and at-home suicide was identified, with 32 years of age being the critical turning point. An at-home suicide hotspot was identified in the north-western region of Hong Kong, which had lower median household income, higher income inequality and higher percentages of households with single elderly people, and new arrivals, compared with other areas.ConclusionSuicide prevention should start at home by restricting access to suicide methods. Community-based suicide prevention interventions with improvement of social services should target vulnerable members in identified suicide hotspots.


Sign in / Sign up

Export Citation Format

Share Document