rate of change
Recently Published Documents


TOTAL DOCUMENTS

4362
(FIVE YEARS 1454)

H-INDEX

95
(FIVE YEARS 11)

2022 ◽  
Vol 20 (2) ◽  
pp. 259-268
Author(s):  
Gustavo Marchesan ◽  
Carlos Lazaro ◽  
Ghendy Cardoso Junior ◽  
Luiz Fernando Freitas-Gutierres ◽  
Adriano Peres de Morais

2022 ◽  
Vol 119 (3) ◽  
pp. e2110666119
Author(s):  
Sylvain Gandon ◽  
Sébastien Lion

The limited supply of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) raises the question of targeted vaccination. Many countries have opted to vaccinate older and more sensitive hosts first to minimize the disease burden. However, what are the evolutionary consequences of targeted vaccination? We clarify the consequences of different vaccination strategies through the analysis of the speed of viral adaptation measured as the rate of change of the frequency of a vaccine-adapted variant. We show that such a variant is expected to spread faster if vaccination targets individuals who are likely to be involved in a higher number of contacts. We also discuss the pros and cons of dose-sparing strategies. Because delaying the second dose increases the proportion of the population vaccinated with a single dose, this strategy can both speed up the spread of the vaccine-adapted variant and reduce the cumulative number of deaths. Hence, strategies that are most effective at slowing viral adaptation may not always be epidemiologically optimal. A careful assessment of both the epidemiological and evolutionary consequences of alternative vaccination strategies is required to determine which individuals should be vaccinated first.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 115
Author(s):  
Ming Chen ◽  
Fei Dai

Air pollution, especially PM2.5 pollution, still seriously endangers the health of urban residents in China. The built environment is an important factor affecting PM2.5; however, the key factors remain unclear. Based on 37 neighborhoods located in five Chinese megacities, three relative indicators (the range, duration, and rate of change in PM2.5 concentration) at four pollution levels were calculated as dependent variables to exclude the background levels of PM2.5 in different cities. Nineteen built environment factors extracted from green space and gray space and three meteorological factors were used as independent variables. Principal component analysis was adopted to reveal the relationship between built environment factors, meteorological factors, and PM2.5. Accordingly, 24 models were built using 32 training neighborhood samples. The results showed that the adj_R2 of most models was between 0.6 and 0.8, and the highest adj_R2 was 0.813. Four principal factors were the most important factors that significantly affected the growth and reduction of PM2.5, reflecting the differences in green and gray spaces, building height and its differences, relative humidity, openness, and other characteristics of the neighborhood. Furthermore, the relative error was used to test the error of the predicted values of five verification neighborhood samples, finding that these models had a high fitting degree and can better predict the growth and reduction of PM2.5 based on these built environment factors.


2022 ◽  
Vol 7 (1) ◽  
pp. 44-55
Author(s):  
Kevin Muldoon-Smith ◽  
Leo Moreton

Obsolescence and vacancy are part of the traditional building life cycle, as tenants leave properties and move to new ones. Flux, a period of uncertainty before the establishment of new direction, can be considered part of building DNA. What is new, due to structural disruptions in the way we work, is the rate and regularity of flux, reflected in obsolescence, vacancy, and impermanent use. Covid-19 has instantly accelerated this disruption. Retail failure has increased with even more consumers moving online. While employees have been working from home, rendering the traditional office building in the central business district, at least temporarily, obsolete. This article reflects on the situation by reporting findings from an 18-month research project into the practice of planning adaptation in the English built environment. Original findings based on interviews with a national sample of local authority planners, combined with an institutional analysis of planning practice since the 1947 Town and Country Planning Act, suggest that the discipline of planning in England is struggling with the reality of flux. There is a demand for planning to act faster, due to the speed of change in the built environment, and liberal political concerns with planning regulation. This is reflected in relaxations to permitted development rules and building use categories. However, participants also indicate that there is a concurrent need for the planning system to operate in a more measured way, to plan the nuanced complexity of a built environment no longer striated by singular use categories at the local level. This notion of flux suggests a process of perpetual change, turbulence, and volatility. However, our findings suggest that within this process, there is a temporal dialectic between an accelerating rate of change in the built environment and a concomitant need to plan in a careful way to accommodate adaptation. We situate these findings in a novel reading of the complex adaptive systems literature, arguing that planning practice needs to embrace uncertainty, rather than eradicate it, in order to enable built environment adaptation. These findings are significant because they offer a framework for understanding how successful building adaptation can be enabled in England, moving beyond the negativity associated with the adaptation of buildings in recent years. This is achieved by recognizing the complex interactions involved in the adaptation process between respective stakeholders and offering an insight into how respective scales of planning governance can coexist successfully.


MAUSAM ◽  
2022 ◽  
Vol 52 (4) ◽  
pp. 697-702
Author(s):  
S. ABRAHAM THAMBI RAJA ◽  
G. RENUKA ◽  
K. RETNAKUMARI

Earlier works on Ramdas Layer were about its certainty, its existence, energy balance on the layer and a matching mathematical model. We, first identified it in Thiruvananthapuram, Kerala, for eight days during a fortnight study on soil heat flux. A lifted minimum in temperature could have implications in agriculture and horticulture and so with a view to finding out a range of height through which Ramdas layer occurs, Ramdas-max, Ramdas-min are identified. On 24 January 1994, Ramdas layer occurred at a maximum height of 0.8m from the surface and the day is labeled as Ramdas-max. On 1 February 1994, it occurred at a lower height of 0.4m from the surface and the day is labeled as Ramdas-min.   The thermal wave at the ground and at 0.05m depth, the range of thermal wave, its relationship with Ramdas layer, the temperature profile, the rate of change of heat in that layer with that at the surface and the subsoil heat flux at the sub-soil surface stratum(surface-0.05m) during R~mdas-max and Ramdas-min are duly compared and discussed.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 540
Author(s):  
Ola Elfmark ◽  
Gertjan Ettema ◽  
Petter Jølstad ◽  
Matthias Gilgien

The purpose of this study was to find a generic method to determine the aerial phase of ski jumping in which the athlete is in a steady gliding condition, commonly known as the ‘stable flight’ phase. The aerial phase of ski jumping was investigated from a physical point mass, rather than an athlete–action-centered perspective. An extensive data collection using a differential Global Navigation Satellite System (dGNSS) was carried out in four different hill sizes. A total of 93 jumps performed by 19 athletes of performance level, ranging from junior to World Cup, were measured. Based on our analysis, we propose a generic algorithm that identifies the stable flight based on steady glide aerodynamic conditions, independent of hill size and the performance level of the athletes. The steady gliding is defined as the condition in which the rate-of-change in the lift-to-drag-ratio (LD-ratio) varies within a narrow band-width described by a threshold τ. For this study using dGNSS, τ amounted to 0.01s−1, regardless of hill size and performance level. While the absolute value of τ may vary when measuring with other sensors, we argue that the methodology and algorithm proposed to find the start and end of a steady glide (stable flight) could be used in future studies as a generic definition and help clarify the communication of results and enable more precise comparisons between studies.


Author(s):  
Markus J Haapanen ◽  
Juulia Jylhävä ◽  
Lauri Kortelainen ◽  
Tuija M Mikkola ◽  
Minna Salonen ◽  
...  

Abstract Background Early life exposures have been associated with the risk of frailty in old age. We investigated whether early life exposures predict the level and rate of change in a frailty index (FI) from midlife into old age. Methods A linear mixed model analysis was performed using data from three measurement occasions over 17 years in participants from the Helsinki Birth Cohort Study (n=2000) aged 57-84 years. A 41-item FI was calculated on each occasion. Information on birth size, maternal body mass index (BMI), growth in infancy and childhood, childhood socioeconomic status (SES), and early life stress (wartime separation from both parents), was obtained from registers and healthcare records. Results At age 57 years the mean FI level was 0.186 and the FI levels increased by 0.34 percent/year from midlife into old age. Larger body size at birth associated with a slower increase in FI levels from midlife into old age. Per 1kg greater birth weight the increase in FI levels per year was -0.087 percentage points slower (95% CI=-0.163, -0.011; p=0.026). Higher maternal BMI was associated with a higher offspring FI level in midlife and a slower increase in FI levels into old age. Larger size, faster growth from infancy to childhood, and low SES in childhood were all associated with a lower FI level in midlife but not with its rate of change. Conclusions Early life factors seem to contribute to disparities in frailty from midlife into old age. Early life factors may identify groups that could benefit from frailty prevention, optimally initiated early in life.


2022 ◽  
Author(s):  
Huisheng Gao ◽  
Huanhai Xin ◽  
Linbin Huang ◽  
Zhiyi Li ◽  
Wei Huang ◽  
...  

<p>As synchronous generators (SGs) are extensively replaced by inverter-based generators (IBGs), modern power systems are facing complicated frequency stability problems. Conventionally, the frequency nadir and the rate of change of frequency (RoCoF) are the two main factors concerned by power system operators. However, these two factors heavily rely on simulations or experiments, especially in a power system with high-penetration IBGs, which offer limited theoretical insight into how the frequency response characteristics are affected by the devices. This paper aims at filling this gap. Firstly, we derive a formulation of the global frequency for an IBG-penetrated power system, referred to as common-mode frequency (CMF). The derived CMF is demonstrated to be more accurate than existing frequency definitions, e.g., the average system frequency (ASF). Then, a unified transfer function structure (UTFS) is proposed to approximate the frequency responses of different types of devices by focusing on three key parameters<a>, which dramatically reduces the complexity of frequency analysis. </a>On this basis, we introduce two evaluation indices, i.e., frequency drop depth coefficient (FDDC) and frequency drop slope coefficient (FDSC), to theoretically quantify the frequency nadir and the average RoCoF, respectively. Instead of relying on simulations or experiments, our method rigorously links the system’s frequency characteristics to the characteristics of heterogeneous devices, which enables an in-depth understanding regarding how devices affect the system frequency. Finally, the proposed indices are verified through simulations on a modified IEEE 39-bus test system. </p>


2022 ◽  
Author(s):  
Huisheng Gao ◽  
Huanhai Xin ◽  
Linbin Huang ◽  
Zhiyi Li ◽  
Wei Huang ◽  
...  

<p>As synchronous generators (SGs) are extensively replaced by inverter-based generators (IBGs), modern power systems are facing complicated frequency stability problems. Conventionally, the frequency nadir and the rate of change of frequency (RoCoF) are the two main factors concerned by power system operators. However, these two factors heavily rely on simulations or experiments, especially in a power system with high-penetration IBGs, which offer limited theoretical insight into how the frequency response characteristics are affected by the devices. This paper aims at filling this gap. Firstly, we derive a formulation of the global frequency for an IBG-penetrated power system, referred to as common-mode frequency (CMF). The derived CMF is demonstrated to be more accurate than existing frequency definitions, e.g., the average system frequency (ASF). Then, a unified transfer function structure (UTFS) is proposed to approximate the frequency responses of different types of devices by focusing on three key parameters<a>, which dramatically reduces the complexity of frequency analysis. </a>On this basis, we introduce two evaluation indices, i.e., frequency drop depth coefficient (FDDC) and frequency drop slope coefficient (FDSC), to theoretically quantify the frequency nadir and the average RoCoF, respectively. Instead of relying on simulations or experiments, our method rigorously links the system’s frequency characteristics to the characteristics of heterogeneous devices, which enables an in-depth understanding regarding how devices affect the system frequency. Finally, the proposed indices are verified through simulations on a modified IEEE 39-bus test system. </p>


Sign in / Sign up

Export Citation Format

Share Document