Novel Form of LTD Induced by Transient, Partial Inhibition of the Na,K-Pump in Rat Hippocampal CA1 Cells

2004 ◽  
Vol 91 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Christian G. Reich ◽  
Susanne E. Mason ◽  
Bradley E. Alger

We tested the hypothesis that transient, partial inhibition of the Na,K-pumps could produce lasting effects on synaptic efficacy in brain tissue by applying a low concentration of the ouabain analogue, dihydroouabain (DHO), to hippocampal slices for 15 min and studying the effects on field excitatory postsynaptic potentials (fEPSPs). DHO caused a suppression of fEPSPs during the application period, but this recovered only partially, to ∼80% of control levels, after washout lasting as long as 2 h. The lasting suppression had several properties in common with low-frequency stimulation induced long-term depression (LFS-LTD), including an ability to depotentiate long-term potentiated responses. However, DHO-LTD was insensitive to blockade of N-methyl-d-aspartate or mGlu receptors or to inhibitors of protein kinase C or p38 MAP kinase. DHO-LTD did not co-occlude with LFS-LTD and therefore appears to represent a novel form of LTD. Interestingly, DHO-LTD could be prevented by pretreating slices with iberiotoxin, the selective blocker of large, Ca2+-dependent K+ channels (“big K,” BK channels), although this toxin did not affect basal fEPSPs. Certain pathological conditions, including hypoxia and ischemia, are associated with a decrease in Na,K-pump activity and hence DHO-LTD may serve as a model for the effects on neuronal function in these conditions.

1996 ◽  
Vol 75 (2) ◽  
pp. 877-884 ◽  
Author(s):  
P. T. Huerta ◽  
J. E. Lisman

1. The induction of long-term weakening of synaptic transmission in rat hippocampal slices was examined in CA1 synapses during cholinergic modulation. 2. Bath application of the cholinergic agonist carbachol (50 microM) activated an oscillation of the local field potential in the theta-frequency range (5-12 Hz), termed theta. It was previously shown that a stimulation train of 40 single shocks (at 0.1 Hz) to the Schaffer collateral-commisural afferents, each synchronized with positive peaks of theta, caused homosynaptic long-term enhancement in CA1. Furthermore, long-term depression (LTD) was sporadically observed when the stimulation train was given at negative troughs of theta. Here we have sought to determine stable conditions for LTD induction during theta. 3. Synaptic weakening was reliably obtained, by giving 40 shocks (at 0.1 Hz) at theta-troughs, only in pathways that had been previously potentiated. This decrement, termed theta-LTD, was synapse specific because it did not occur in an independent pathway not stimulated during theta. The interval between the initial potentiating tetanus and theta-LTD induction could be as long as 90 min. 4. theta-LTD could be saturated; after consecutive episodes of theta-LTD induction, no significant further depression was obtained. Moreover, theta-LTD could be reversed by tetanic stimulation. 5. theta-LTD could prevent the induction of LTD by 600-900 pulses at 1 Hz. This suggests that the two protocols may share common mechanisms at the synaptic level. 6. We conclude that single presynaptic spikes that occur at low frequency and are properly timed to the troughs of theta may be a relevant mechanism for decreasing the strength of potentiated synapses.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hiroshi Takagi ◽  
Mitsutoshi Setou ◽  
Seiji Ito ◽  
Ikuko Yao

SCRAPPER, which is an F-box protein encoded byFBXL20, regulates the frequency of the miniature excitatory synaptic current through the ubiquitination of Rab3-interacting molecule 1. Here, we recorded the induction of long-term potentiation/depression (LTP/LTD) in CA3-CA1 synapses in E3 ubiquitin ligase SCRAPPER-deficient hippocampal slices. Compared to wild-type mice,Scrapper-knockout mice exhibited LTDs with smaller magnitudes after induction with low-frequency stimulation and LTPs with larger magnitudes after induction with tetanus stimulation. These findings suggest that SCRAPPER regulates the threshold of bidirectional synaptic plasticity and, therefore, metaplasticity.


Sign in / Sign up

Export Citation Format

Share Document