inositol 1
Recently Published Documents


TOTAL DOCUMENTS

441
(FIVE YEARS 28)

H-INDEX

46
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Marlene Murray ◽  
Taejun Ok ◽  
Haley Kang ◽  
Jee Yeon Lee ◽  
Bomi Kim ◽  
...  

AbstractBipolar disorder is a debilitating mood disorder characterized by recurring episodes of mania and depression. It affects 2.6% of adults and has a lifetime prevalence among adults of 3.9%. Current mood stabilizers are not always effective and/or are not well tolerated by many patients; thus, there is a need to develop or identify more effective and less harmful treatments. Omega-3-fatty acids have been shown to be effective in the treatment of bipolar disorder; however, their mechanism of action is unknown. Myo-inositol depletion has been hypothesized as the mechanism by which mood stabilizers exert their therapeutic effect. Using an enzymatic assay, we determined intracellular myo-inositol levels increased more than 2-fold when cells were grown in the presence of the omega-3 fatty acid docosahexaenoic acid (DHA). RT-qPCR was used to characterize the effects of DHA on genes in the myo-inositol biosynthetic pathway. We show DHA increases relative expression and has a concentration-dependent impact on INO1 and INM1, which encode myo-inositol-1-phosphate synthase and myo-inositol monophosphate 1-phosphatase, respectively. We therefore conclude that the omega-3-fatty acid DHA exerts its therapeutic effect on bipolar disorder by increasing intracellular myo-inositol, which may be accomplished by upregulating its biosynthetic genes.


2021 ◽  
Author(s):  
Ivan Rodrigo Wolf ◽  
Lucas Farinazzo Marques ◽  
Lauana Fogaça de Almeida ◽  
Lucas Cardoso Lázari ◽  
Leonardo Nazário de Moraes ◽  
...  

Ethanol (EtOH) is a substantial stressor for Saccharomyces cerevisiae. Data integration from strains with different phenotypes, including EtOH stress-responsive lncRNAs, are still not available. We covered these issues seeking systems modifications that drive the divergences between higher (HT) and lower (LT) EtOH tolerant strains under their highest stress conditions. We showed that these phenotypes are neither related to high viability nor faster population rebound after stress relief. LncRNAs work on many stress-responsive systems in a strain-specific manner promoting the EtOH tolerance. Cells use membraneless RNA/protein storage and degradation systems to endure the stress harming, and lncRNAs jointly promote EtOH tolerance. CTA1 and longevity are primer systems promoting phenotype-specific gene expression. The lower cell viability and growth under stress is a by-product of sphingolipids and inositol phosphorylceramide dampening, acerbated in HTs by sphinganine, ERG9, and squalene overloads; LTs diminish this harm by accumulating inositol 1-phosphate. The diauxic shift drives an EtOH buffering by promoting an energy burst under stress, mainly in HTs. Analysis of mutants showed genes and lncRNAs in three strains critical for their EtOH tolerance. Finally, longevity, peroxisome, energy and lipid metabolisms, RNA/protein degradation and storage systems are the main pathways driving the EtOH tolerance phenotypes.


Author(s):  
Ryo Tashiro ◽  
Takaaki Sato ◽  
Haruyuki Atomi ◽  
Kunio Miki ◽  
Masahiro Fujihashi
Keyword(s):  

Author(s):  
Dibyendu Sekhar Mahanty ◽  
Sautrik Basu ◽  
Jukta Adhikari

Altered salinity is one the most important perils encountered by marine plants inclusive of algae. Under hyper saline condition plants accumulate several stress relieving osmolytes including myo-inositol, the most widespread cyclitol in plants. The present communication reports the occurrence of myo-inositol biosynthesis in six different Rhodophycean seaweeds growing under stressful intertidal habitats of the Okha coast (Gujarat, India), on the basis of a study conducted on two marker enzymes of myo-inositol biosysnthesis [L-myo-inositol-1-phosphate synthase and D/L-myo-inositol-1-phosphate phosphatise]. Both enzymes were partially purified from Halymenia venusta to about 27 and 39 folds respectively over the homogenate following low-speed centrifugation, 30-75% ammonium sulphate fractionation, successive chromatography through DEAE-cellulose / CM-Cellulose, Sephadex G-200 and BioGel 0.5m / UltrogelAcA 34 columns. The temperature and pH optima for both the enzymes were similar and were recorded to be 350C and 7.5 respectively. For MIPS, D-glucose-6-phosphate and NAD were the exclusive substrate and coenzyme respectively and D/L-MIP was the sole substrate for MIPP. The Km values for D-glucsoe-6-phosphate and β-NAD were recorded to be 3.599 mM and 0.2366 mM respectively, while the Km value for D-MIP was found to be 0.4070 mM. Monovalent cations K+ had slight stimulatory, Li+ was strong inhibitory for both the enzymes. Divalent cations Ca2+ exhibited slight stimulatory and Cd2+ reduced MIPS and MIPP activities. MIPP was stimulated by Mg2+. Cu2+ and Hg2+ were strong inhibitors of both the enzymes. A steady and proportionate increase in the content of free myo-inositol was observed along with elevated levels of recorded salinity.


Author(s):  
Anna Storey ◽  
Khalil Elgmati ◽  
Yisu Wang ◽  
Paul Knaggs ◽  
Karl Swann

Abstract At fertilization in mice and humans, the activation of the egg is caused by a series of repetitive Ca2+ oscillations which are initiated by phospholipase-C(zeta)ζ that generates inositol-1-4-5-trisphophate (InsP3). Ca2+ oscillations and egg activation can be triggered in mature mouse eggs by incubation in Sr2+ containing medium, but this does not appear to be effective in human eggs. Here we have investigated the reason for this apparent difference using mouse eggs, and human eggs that failed to fertilize after IVF or ICSI. Mouse eggs incubated in Ca2+-free, Sr2+-containing medium immediately underwent Ca2+ oscillations but human eggs consistently failed to undergo Ca2+ oscillations in the same Sr2+ medium. We tested the InsP3-receptor (IP3R) sensitivity directly by photo-release of caged InsP3 and found that mouse eggs were about 10 times more sensitive to InsP3 than human eggs. There were no major differences in the Ca2+ store content between mouse and human eggs. However, we found that the ATP concentration was consistently higher in mouse compared to human eggs. When ATP levels were lowered in mouse eggs by incubation in pyruvate-free medium, Sr2+ failed to cause Ca2+ oscillations. When pyruvate was added back to these eggs, the ATP levels increased and Ca2+ oscillations were induced. This suggests that ATP modulates the ability of Sr2+ to stimulate IP3R-induced Ca2+ release in eggs. We suggest that human eggs may be unresponsive to Sr2+ medium because they have a lower level of cytosolic ATP.


2020 ◽  
Vol 164 ◽  
pp. 107792
Author(s):  
Minghua Yi ◽  
Liuzhen Yang ◽  
Jian Ma ◽  
Hang Liu ◽  
Min He ◽  
...  
Keyword(s):  

Author(s):  
Mousumi Sinha ◽  
Rahul Jagadeesan ◽  
Neeraj Kumar ◽  
Satabdi Saha ◽  
Gugan Kothandan ◽  
...  

2020 ◽  
Vol 48 (19) ◽  
pp. 10739-10752
Author(s):  
Angad Garg ◽  
Stewart Shuman ◽  
Beate Schwer

Abstract Fission yeast phosphate homeostasis genes are repressed in phosphate-rich medium by transcription of upstream lncRNAs that interferes with activation of the flanking mRNA promoters. lncRNA control of PHO gene expression is influenced by the Thr4 phospho-site in the RNA polymerase II CTD and the 3′ processing/termination factors CPF and Rhn1, mutations of which result in hyper-repression of the PHO regulon. Here, we performed a forward genetic screen for mutations that de-repress Pho1 acid phosphatase expression in CTD-T4A cells. Sequencing of 18 independent STF (Suppressor of Threonine Four) isolates revealed, in every case, a mutation in the C-terminal pyrophosphatase domain of Asp1, a bifunctional inositol pyrophosphate (IPP) kinase/pyrophosphatase that interconverts 5-IP7 and 1,5-IP8. Focused characterization of two STF strains identified 51 coding genes coordinately upregulated vis-à-vis the parental T4A strain, including all three PHO regulon genes (pho1, pho84, tgp1). Whereas these STF alleles—asp1-386(Stop) and asp1-493(Stop)—were lethal in a wild-type CTD background, they were viable in combination with mutations in CPF and Rhn1, in which context Pho1 was also de-repressed. Our findings implicate Asp1 pyrophosphatase in constraining 1,5-IP8 or 1-IP7 synthesis by Asp1 kinase, without which 1-IPPs can accumulate to toxic levels that elicit precocious termination by CPF/Rhn1.


2020 ◽  
Vol 295 (46) ◽  
pp. 15767-15781
Author(s):  
Fabienne Briand-Mésange ◽  
Véronique Pons ◽  
Sophie Allart ◽  
Julien Masquelier ◽  
Gaëtan Chicanne ◽  
...  

Endocannabinoid signaling plays a regulatory role in various (neuro)biological functions. 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid, and although its canonical biosynthetic pathway involving phosphoinositide-specific phospholipase C and diacylglycerol lipase α is known, alternative pathways remain unsettled. Here, we characterize a noncanonical pathway implicating glycerophosphodiesterase 3 (GDE3, from GDPD2 gene). Human GDE3 expressed in HEK293T cell membranes catalyzed the conversion of lysophosphatidylinositol (LPI) into monoacylglycerol and inositol-1-phosphate. The enzyme was equally active against 1-acyl and 2-acyl LPI. When using 2-acyl LPI, where arachidonic acid is the predominant fatty acid, LC-MS analysis identified 2-AG as the main product of LPI hydrolysis by GDE3. Furthermore, inositol-1-phosphate release into the medium occurred upon addition of LPI to intact cells, suggesting that GDE3 is actually an ecto-lysophospholipase C. In cells expressing G-protein–coupled receptor GPR55, GDE3 abolished 1-acyl LPI–induced signaling. In contrast, upon simultaneous ex-pression of GDE3 and cannabinoid receptor CB2, 2-acyl LPI evoked the same signal as that induced by 2-AG. These data strongly suggest that, in addition to degrading the GPR55 LPI ligand, GDE3 can act as a switch between GPR55 and CB2 signaling. Coincident with a major expression of both GDE3 and CB2 in the spleen, spleens from transgenic mice lacking GDE3 displayed doubling of LPI content compared with WT mice. Decreased production of 2-AG in whole spleen was also observed, supporting the in vivo relevance of our findings. These data thus open a new research avenue in the field of endocannabinoid generation and reinforce the view of GPR55 and LPI being genuine actors of the endocannabinoid system.


Sign in / Sign up

Export Citation Format

Share Document