f box protein
Recently Published Documents


TOTAL DOCUMENTS

716
(FIVE YEARS 146)

H-INDEX

80
(FIVE YEARS 7)

Author(s):  
Ting Wu ◽  
Cheng-Li Fan ◽  
Lian-Tao Han ◽  
Yuan-Bing Guo ◽  
Tong-Bao Liu

Cryptococcus neoformans is an opportunistic yeast-like pathogen that mainly infects immunocompromised individuals and causes fatal meningitis. Sexual reproduction can promote the exchange of genetic material between different strains of C. neoformans, which is one of the reasons leading to the emergence of highly pathogenic and drug-resistant strains of C. neoformans. Although much research has been done on the regulation mechanism of Cryptococcus sexual reproduction, there are few studies on the sexual reproduction regulation of Cryptococcus by the ubiquitin-proteasome system. This study identified an F-box protein, Cdc4, which contains a putative F-box domain and eight WD40 domains. The expression pattern analysis showed that the CDC4 gene was expressed in various developmental stages of C. neoformans, and the Cdc4 protein was localized in the nucleus of cryptococcal cells. In vitro stress responses assays showed that the CDC4 overexpression strains are sensitive to SDS and MMS but not Congo red, implying that Cdc4 may regulate the cell membrane integrity and repair of DNA damage of C. neoformans. Fungal virulence assay showed that although the cdc4Δ mutant grows normally and can produce typical virulence factors such as capsule and melanin, the cdc4Δ mutant completely loses its pathogenicity in a mouse systemic-infection model. Fungal mating assays showed that Cdc4 is also essential for fungal sexual reproduction in C. neoformans. Although normal mating hyphae were observed during mating, the basidiospores’ production was blocked in bilateral mating between cdc4Δ mutants. Fungal nuclei development assay showed that the nuclei failed to undergo meiosis after fusion inside the basidia during the bilateral mating of cdc4Δ mutants, indicating that Cdc4 is critical to regulating meiosis during cryptococcal mating. In summary, our study revealed that the F-box protein Cdc4 is critical for fungal virulence and sexual reproduction in C. neoformans.


Author(s):  
Lian-Tao Han ◽  
Yu-Juan Wu ◽  
Tong-Bao Liu

The ubiquitin-proteasome system (UPS) is the major protein turnover mechanism that plays an important role in regulating various cellular functions. F-box proteins are the key proteins of the UPS, responsible for the specific recognition and ubiquitination of downstream targets. Our previous studies showed that the F-box protein Fbp1 plays an essential role in the virulence of C. neoformans. However, the molecular mechanism of Fbp1 regulating the virulence of C. neoformans is still unclear. In this study, we analyzed the potential Fbp1 substrates using an iTRAQ-based proteomic approach and identified the zinc-binding protein Zbp1 as a substrate of Fbp1. Protein interaction and stability assays showed that Zbp1 interacts with Fbp1 and is a downstream target of Fbp1. Ubiquitination analysis in vivo showed that the ubiquitination of Zbp1 is dependent on Fbp1 in C. neoformans. Subcellular localization analysis revealed that the Zbp1 protein was localized in the nucleus of C. neoformans cells. In addition, both deletion and overexpression of the ZBP1 gene led to the reduced capsule size, while overexpression has a more significant impact on capsule size reduction. Fungal virulence assays showed that although the zbp1Δ mutants are virulent, virulence was significantly attenuated in the ZBP1 overexpression strains. Fungal load assay showed that the fungal burdens recovered from the mouse lungs decreased gradually after infection, while no yeast cells were recovered from the brains and spleens of the mice infected by ZBP1 overexpression strains. Thus, our results revealed a new determinant of fungal virulence involving the post-translational regulation of a zinc-binding protein.


2021 ◽  
Author(s):  
Pengbai Li ◽  
Liuming Guo ◽  
Xinyuan Lang ◽  
Mingjun Li ◽  
Gentu Wu ◽  
...  

Phytohormone gibberellin (GA) is an important plant signaling molecule that regulates plant growth and defense against abiotic and biotic stresses. To date, the molecular mechanism of the plant responses to viral infection mediated by GA is still undetermined. DELLA is a repressor of GA signaling and is recognized by the F-box protein, a component of the SCF SLY1/GID2 complex. The recognized DELLA is degraded by the ubiquitin-26S proteasome, leading to the activation of the GA signaling. Here, we report that ageratum leaf curl Sichuan virus (ALCScV)-infected N. benthamiana plants showed dwarfing symptom and abnormal flower development. The infection of ALCScV alters the expressions of GA pathway-related genes and decreases the content of endogenous GA significantly in N. benthamiana. Further, ALCScV-encoded C4 protein interacts with the DELLA protein NbGAI, and interferes with the interaction between NbGAI and NbGID2 to prevent the degradation of NbGAI, leading to the inhibition of the GA signaling pathway. Silencing of NbGAI or exogenous GA 3 treatment significantly reduces viral accumulation and disease symptoms in N. benthamiana plants. The same results were proved by the experiments with C4 protein encoded by tobacco curly shoot virus (TbCSV). Therefore, we propose a novel mechanism of geminivirus C4 proteins controling virus infection and disease symptom development through interfering GA signaling pathway.


2021 ◽  
Author(s):  
Briana L Sobecks ◽  
Jiming Chen ◽  
Diwakar Shukla

Plant branch and root growth relies on metabolism of the strigolactone (SL) hormone. The interaction between the SL molecule, Oryza sativa DWARF14 (D14) SL receptor, and D3 F-box protein has been shown to play a critical role in SL perception. Previously, it was believed that D3 only interacts with the closed form of D14 to induce downstream signaling, but recent experiments indicate that D3, as well as its C-terminal helix (CTH), can interact with the open form as well to inhibit strigolactone signaling. Two hypotheses for the CTH induced inhibition are that either the CTH affects the conformational ensemble of D14 by stabilizing catalytically inactive states, or the CTH interacts with SLs in a way that prevents them from entering the binding pocket. In this study, we have performed molecular dynamics (MD) simulations to assess the validity of these hypotheses. We used an apo system with only D14 and the CTH to test the active site conformational stability and a holo system with D14, the CTH, and an SL molecule to test the interaction between the SL and CTH. Our simulations show that the CTH affects both active site conformation and the ability of SLs to move into the binding pocket. In the apo system, the CTH allosterically stabilized catalytic residues into their inactive conformation. In the holo system, significant interactions between SLs and the CTH hindered the ability of SLs to enter the D14 binding pocket. These two mechanisms account for the observed decrease in SL binding to D14 and subsequent ligand hydrolysis in the presence of the CTH.


Author(s):  
Xiao-Ran Zhang ◽  
Lei Zhao ◽  
Fang Suo ◽  
Yadong Gao ◽  
Qingcui Wu ◽  
...  

Abstract Conditional degron technologies, which allow a protein of interest to be degraded in an inducible manner, are important tools for biological research, and are especially useful for creating conditional loss-of-function mutants of essential genes. The auxin-inducible degron (AID) technology, which utilizes plant auxin signaling components to control protein degradation in nonplant species, is a widely used small-molecular-controlled degradation method in yeasts and animals. However, the currently available AID systems still have room for further optimization. Here, we have improved the AID system for the fission yeast Schizosaccharomyces pombe by optimizing all three components: the AID degron, the small-molecule inducer, and the inducer-responsive F-box protein. We chose a 36-amino-acid sequence of the Arabidopsis IAA17 protein as the degron and employed three tandem copies of it to enhance efficiency. To minimize undesirable side effects of the inducer, we adopted a bulky analog of auxin, 5-adamantyl-IAA, and paired it with the F-box protein OsTIR1 that harbors a mutation (F74A) at the auxin-binding pocket. 5-adamantyl-IAA, when utilized with OsTIR1-F74A, is effective at concentrations thousands of times lower than auxin used in combination with wild-type OsTIR1. We tested our improved AID system on 10 essential genes and achieved inducible lethality for all of them, including ones that could not be effectively inactivated using a previously published AID system. Our improved AID system should facilitate the construction of conditional loss-of-function mutants in fission yeast.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2360
Author(s):  
Keheng Xu ◽  
Nan Wu ◽  
Wenbo Yao ◽  
Xiaowei Li ◽  
Yonggang Zhou ◽  
...  

The ubiquitin–proteasome pathway (UPP) is an important protein degradation pathway that can participate in the regulation of the physiological process of organisms by specifically removing abnormal peptides and degrading cell regulators. UPP mainly involves three enzymes, among which the E3 ubiquitin ligase function is central to UPP. E3 ubiquitin ligases can recruit substrate protein for ubiquitination, and they have various forms. Among them, the Skp1–Cul1–F-box (SCF) complex is the most representative member of the cullin RING ubiquitin ligases type in RING-domain E3 ligases, being mainly composed of Cullin 1, Skp1, Rbx1, and F-box proteins. The F-box protein is the key component for SCF to perform specific functions. The F-box protein is one of the largest protein families in plants, and its family members are involved in the regulation of many key physiological processes, such as growth and development of plants and the response to external stimuli. Herein, we briefly review the structure, classification, function, and hormone signaling pathways of F-box proteins.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shijuan Li ◽  
Bingliang Xu ◽  
Xiaolei Niu ◽  
Xiang Lu ◽  
Jianping Cheng ◽  
...  

Agrobacterium tumefaciens can cause crown gall tumors by transferring both an oncogenic piece of DNA (T-DNA) and several effector proteins into a wide range of host plants. For the translocated effector VirE3 multiple functions have been reported. It acts as a transcription factor in the nucleus binding to the Arabidopsis thaliana pBrp TFIIB-like protein to activate the expression of VBF, an F-box protein involved in degradation of the VirE2 and VIP1 proteins, facilitating Agrobacterium-mediated transformation. Also VirE3 has been found at the plasma membrane, where it could interact with VirE2. Here, we identified AtJAZ8 in a yeast two-hybrid screening with VirE3 as a bait and confirmed the interaction by pull-down and bimolecular fluorescence complementation assays. We also found that the deletion of virE3 reduced Agrobacterium virulence in a root tumor assay. Overexpression of virE3 in Arabidopsis enhanced tumorigenesis, whereas overexpression of AtJAZ8 in Arabidopsis significantly decreased the numbers of tumors formed. Further experiments demonstrated that AtJAZ8 inhibited the activity of VirE3 as a plant transcriptional regulator, and overexpression of AtJAZ8 in Arabidopsis activated AtPR1 gene expression while it repressed the expression of AtPDF1.2. Conversely, overexpression of virE3 in Arabidopsis suppressed the expression of AtPR1 whereas activated the expression of AtPDF1.2. Our results proposed a novel mechanism of counter defense signaling pathways used by Agrobacterium, suggesting that VirE3 and JAZ8 may antagonistically modulate the salicylic acid/jasmonic acid (SA/JA)-mediated plant defense signaling response during Agrobacterium infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anqi Hu ◽  
Qiaoqiao Zhao ◽  
Li Chen ◽  
Jinping Zhao ◽  
Yuehua Wang ◽  
...  

Strigolactones (SLs) are a class of important plant hormones mainly regulating plant architecture such as branching, which is crucial for crop yield. It is valuable to study SL signaling pathway and its physiological function in sugarcane, the most important sugar crop, for further molecular breeding. Here, two putative SL receptors SsD14a/b and the interacting F-box protein SsMAX2 were identified in Saccharum spontaneum. SL induced both SsD14a and SsD14b to interact with SsMAX2 in yeast. SsD14a, but not SsD14b, could bind with AtMAX2 and AtSMXL7/SsSMXL7. Overexpression of SsD14a or SsMAX2 rescued the increased branching phenotypes of Arabidopsis thaliana d14-1 or max2-3 mutants, respectively. Moreover, the crystal structure of N-terminal truncated SsD14a was solved, with an overall structure identical to AtD14 and OsD14 in the open state, consistent with its conserved branching suppression capacity in Arabidopsis. In line with the biochemical observations, SsD14b could not completely complement in d14-1 although these two SsD14 proteins have almost identical primary sequences except for very few residues. Complement with the combination of SsD14b and SsMAX2 still failed to rescue the d14-1 max2-3 double mutant multi-branching phenotype, indicating SsD14b–AtSMXL7 complex formation is required for regulating branching. Mutagenesis analyses revealed that residue R310 at α10 helix of SsD14a was crucial for the binding with SsSMXL7/AtSMXL7 but not SsMAX2. The site-equivalent single-residue P304R substitution enabled SsD14b to bind with AtMAX2 and AtSMXL7/SsSMXL7 and to rescue the phenotype of d14-1 max2-3 together with SsMAX2. Moreover, this conserved Arg residue across species including rice and Arabidopsis determined the activity of SL receptors through maintaining their interaction with SMXL repressors. Taken together, our work identified conserved and divergent strigolactone receptors in sugarcane core SL signaling pathway and revealed a key residue crucial for plant branching control.


2021 ◽  
Author(s):  
Caroline A. Spike ◽  
Tatsuya Tsukamoto ◽  
David Greenstein

The ubiquitin-mediated degradation of oocyte translational regulatory proteins is a conserved feature of the oocyte-to-embryo transition (OET). In the nematode Caenorhabditis elegans, multiple translational regulatory proteins, including the TRIM-NHL RNA-binding protein LIN-41/Trim71 and the Pumilio-family RNA-binding proteins PUF-3 and PUF-11, are degraded during the OET. Degradation of each protein requires activation of the M-phase cyclin-dependent kinase CDK-1, is largely complete by the end of the first meiotic division and does not require the anaphase promoting complex (APC). However, only LIN-41 degradation requires the F-box protein SEL-10/FBW7/Cdc4p, the substrate recognition subunit of an SCF-type E3 ubiquitin ligase. This finding suggests that PUF-3 and PUF-11, which localize to LIN-41-containing ribonucleoprotein particles (RNPs), are independently degraded through the action of other factors and that the oocyte RNPs are disassembled in a concerted fashion during the OET. We develop and test the hypothesis that PUF-3 and PUF-11 are targeted for degradation by the proteasome-associated HECT-type ubiquitin ligase ETC-1/UBE3C/Hul5, which is broadly expressed in C. elegans. We find that several GFP-tagged fusion proteins that are degraded during the OET, including fusions with PUF-3, PUF-11, LIN-41, IFY-1/Securin and CYB-1/Cyclin B, are incompletely degraded when ETC-1 function is compromised. However, it is the fused GFP moiety that appears to be the critical determinant of this proteolysis defect. These findings are consistent with a conserved role for ETC-1 in promoting proteasome processivity and suggest that proteasomal processivity is an important element of the OET during which many key oocyte regulatory proteins are rapidly targeted for degradation.


2021 ◽  
Author(s):  
Rebecca Harris ◽  
Ming Yang ◽  
Christina Schmidt ◽  
Sarbjit Singh ◽  
Amarnath Natarajan ◽  
...  

Deregulated Fbxo7 expression is associated with many pathologies, including anaemia, male sterility, cancer, and Parkinson's disease, demonstrating its critical role in a variety of cell types. Although Fbxo7 is an F-box protein that recruits substrates for SCF-type E3 ubiquitin ligases, it also promotes the formation of cyclin D/Cdk6/p27 complexes in an E3-ligase independent fashion. We discovered PFKP, the major gatekeeper of glycolysis, in a screen for Fbxo7 substrates. PFKP has been previously shown to be a critical substrate of Cdk6 for the viability of T-ALL cells. We investigated the molecular relationships between Fbxo7, Cdk6 and PFKP, and the functional effect Fbxo7 has on T cell metabolism, viability, and activation. Fbxo7 promotes Cdk6-independent ubiquitination and Cdk6-dependent phosphorylation of PFKP. Importantly Fbxo7-deficient cells have reduced Cdk6 activity, and haematopoietic and lymphocytic cell lines show a significant dependency on Fbxo7. Compared to WT cells, CD4+ T cells with reduced Fbxo7 expression show increased glycolysis, despite lower cell viability and activation levels. Metabolomic studies of activated CD4+ T cells confirm increased glycolytic flux in Fbxo7-deficient cells, as well as altered nucleotide biosynthesis and arginine metabolism. We show Fbxo7 expression is glucose-responsive at the mRNA and protein level, and we propose Fbxo7 inhibits PFKP and glycolysis via its activation of Cdk6.


Sign in / Sign up

Export Citation Format

Share Document