scholarly journals Approximate Potentials with Applications to Strongly Nonlinear Oscillators with Slowly Varying Parameters

2003 ◽  
Vol 10 (5-6) ◽  
pp. 379-386 ◽  
Author(s):  
Jianping Cai ◽  
Y.P. Li

A method of approximate potential is presented for the study of certain kinds of strongly nonlinear oscillators. This method is to express the potential for an oscillatory system by a polynomial of degree four such that the leading approximation may be derived in terms of elliptic functions. The advantage of present method is that it is valid for relatively large oscillations. As an application, the elapsed time of periodic motion of a strongly nonlinear oscillator with slowly varying parameters is studied in detail. Comparisons are made with other methods to assess the accuracy of the present method.

2005 ◽  
Vol 2005 (3) ◽  
pp. 365-375 ◽  
Author(s):  
Jianping Cai ◽  
Y. P. Li ◽  
Xiaofeng Wu

The effect of negative damping to an oscillatory system is to force the amplitude to increase gradually and the motion will be out of the potential well of the oscillatory system eventually. In order to deduce the escape time from the potential well of quadratic or cubic nonlinear oscillator, the multiple scales method is firstly used to obtain the asymptotic solutions of strongly nonlinear oscillators with slowly varying parameters, and secondly the character of modulus of Jacobian elliptic function is applied to derive the equations governing the escape time. The approximate potential method, instead of Taylor series expansion, is used to approximate the potential of an oscillation system such that the asymptotic solution can be expressed in terms of Jacobian elliptic function. Numerical examples verify the efficiency of the present method.


1998 ◽  
Vol 9 (2) ◽  
pp. 187-194
Author(s):  
J. HU

In a recent paper, the author showed that for certain symmetric bisuperlinear equations, cosine-like boundary behaviours will not yield symmetric solutions [1]. In this paper, we attack the adiabatic invariant problem by showing that, for these strongly nonlinear oscillators, the adiabatic invariant is intimately related to z′(0;∈) for a family of solutions.


2019 ◽  
Vol 48 (3) ◽  
pp. 241-254 ◽  
Author(s):  
Akuro Big-Alabo

A new cubication method is proposed for periodic solution of nonlinear Hamiltonian oscillators. The method is formulated based on quasi-static equilibrium of the original oscillator and the undamped cubic Duffing oscillator. The cubication constants derived from the present cubication method are always based on elementary functions and are simpler than the constants derived by other cubication methods. The present method was verified using three common examples of strongly nonlinear oscillators and was found to give reasonably accurate results. The method can be used to introduce nonlinear oscillators in relevant undergraduate physics and mechanics courses.


2011 ◽  
Vol 3 (6) ◽  
pp. 689-701
Author(s):  
Malik Mamode

AbstractThe exact analytical expression of the period of a conservative nonlinear oscillator with a non-polynomial potential, is obtained. Such an oscillatory system corresponds to the transverse vibration of a particle attached to the center of a stretched elastic wire. The result is given in terms of elliptic functions and validates the approximate formulae derived from various approximation procedures as the harmonic balance method and the rational harmonic balance method usually implemented for solving such a nonlinear problem.


Sign in / Sign up

Export Citation Format

Share Document