periodic solution
Recently Published Documents


TOTAL DOCUMENTS

1702
(FIVE YEARS 267)

H-INDEX

46
(FIVE YEARS 9)

2022 ◽  
Vol 40 ◽  
pp. 1-15
Author(s):  
Abderrahim Charkaoui ◽  
Ghada Kouadri ◽  
Nour Eddine Alaa

The aim of this paper is to prove the existence of weak periodic solution and super solution for M×M reaction diffusion system with L1 data and nonlinearity on the gradient. The existence is proved by the technique of sub and super solution and Schauder fixed point theorem.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Y. Tian ◽  
H. M. Li

In presence of predator population, the prey population may significantly change their behavior. Fear for predator population enhances the survival probability of prey population, and it can greatly reduce the reproduction of prey population. In this study, we propose a predator-prey fishery model introducing the cost of fear into prey reproduction with Holling type-II functional response and prey-dependent harvesting and investigate the global dynamics of the proposed model. For the system without harvest, it is shown that the level of fear may alter the stability of the positive equilibrium, and an expression of fear critical level is characterized. For the harvest system, the existence of the semitrivial order-1 periodic solution and positive order- q ( q ≥ 1 ) periodic solution is discussed by the construction of a Poincaré map on the phase set, and the threshold conditions are given, which can not only transform state-dependent harvesting into a cycle one but also provide a possibility to determine the harvest frequency. In addition, to ensure a certain robustness of the adopted harvest policy, the threshold condition for the stability of the order- q periodic solution is given. Meanwhile, to achieve a good economic profit, an optimization problem is formulated and the optimum harvest level is obtained. Mathematical findings have been validated in numerical simulation by MATLAB. Different effects of different harvest levels and different fear levels have been demonstrated by depicting figures in numerical simulation using MATLAB.


Author(s):  
Zhibo Cheng ◽  
Juan Song

This paper is devoted to studying the existence of at least one periodic solution for a generalized Basener-Ross model with time-dependent coefficients. The discussion is based on the Man\’asevich-Mawhin continuation theorem and fixed point theorem of cone mapping together with some properties of Green’s function.


Author(s):  
Penghong Zhong ◽  
Xingfa Chen ◽  
Ye Chen

Based on an equivalent derivative nonlinear Schr\”{o}inger equation, some periodic and non-periodic two-parameter solutions of the deformed continuous Heisenberg spin equation are obtained. These solutions are all proved to be ill-posed by the estimates of Fourier integral in ${H}^{s}_{\mathrm{S}^{2}}$ (periodic solution in ${H}^{s}_{\mathrm{S}^{2}}(\mathbb{T})$ and non-periodic solution in ${H}^{s}_{\mathrm{S}^{2}}(\mathbb{R})$ respectively). If $\alpha \neq 0$, the range of the weak ill-posedness index is $1


Author(s):  
Abhijit Sarkar ◽  
Pankaj Kumar Tiwari ◽  
Samares Pal

The interaction of prey (small fish) and predator (large fish) in lakes/ponds at temperate and tropical regions varies when water level fluctuates naturally during seasonal time. We relate the perceptible effect of fear and anti-predator behavior of prey with the water-level fluctuations and describe how these are influenced by the seasonal changing of water level. So, we consider these as time-dependent functions to make the system more realistic. Also, we incorporate the time-dependent delay in the negative growth rate of prey in predator–prey model with Crowley–Martin-type functional response. We clearly provide the basic dynamics of the system such as positiveness, permanence and nonpersistence. The existence of positive periodic solution is studied using Continuation theorem, and suffiecient conditions for globally attractivity of positive periodic solution are also derived. To make the system more comprehensive, we establish numerical simulations, and compare the dynamics of autonomous and nonautonomous systems in the absence as well as the presence of time delay. Our results show that seasonality and time delay create the occurrence of complex behavior such as prevalence of chaotic disorder which can be potentially suppressed by the cost of fear and prey refuge. Also, if time delay increases, then system leads a boundary periodic solution. Our findings assert that the predation, fear of predator and prey refuge are correlated with water-level variations, and give some reasonable biological interpretations for persistence as well as extinction of species due to water-level variations.


2022 ◽  
Author(s):  
Sachin Kumar ◽  
Nikita Mann ◽  
Harsha Kharbanda

Abstract Nonlinear evolution equations (NLEEs) are extensively used to establish the elementary propositions of natural circumstances. In this work, we study the Konopelchenko-Dubrovsky (KD) equation which depicts non-linear waves in mathematical physics with weak dispersion. The considered model is investigated using the combination of generalized exponential rational function (GERF) method and dynamical system method. The GERF method is utilized to generate closedform invariant solutions to the (2+1)-dimensional KD model in terms of trigonometric, hyperbolic, and exponential forms with the assistance of symbolic computations. Moreover, three-dimensional graphics are displayed to depict the behavior of obtained solitary wave solutions. The model is observed to have single and multiple soliton profiles, kink-wave profiles, and periodic oscillating nonlinear waves. These generated solutions have never been published in the literature. All the newly generated soliton solutions are checked by putting them back into the associated system with the soft computation via Wolfram Mathematica. Moreover, the system is converted into a planer dynamical system using a certain transformation and the analysis of bifurcation is examined. Furthermore, the quasi-periodic solution is investigated numerically for the perturbed system by inserting definite periodic forces into the considered model. With regard to the parameter of the perturbed model, two-dimensional and three-dimensional phase portraits are plotted.


2022 ◽  
Vol 355 ◽  
pp. 02006
Author(s):  
Adnène Arbi ◽  
Najeh Tahri

In this work, since the importance of investigation of oscillators solutions, an methodology for proving the existence and stability of almost anti-periodic solutions of inertial neural networks model on time scales are discussed. By developing an approach based on differential inequality techniques coupled with Lyapunov function method. A numerical example is given for illustration.


2022 ◽  
Vol 4 (3) ◽  
pp. 1-14
Author(s):  
Dong-Ho Tsai ◽  
◽  
Xiao-Liu Wang ◽  

<abstract><p>With the help of heat equation, we first construct an example of a graphical solution to the curve shortening flow. This solution $ y\left(x, t\right) \ $has the interesting property that it converges to a log-periodic function of the form</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ A\sin \left( \log t\right) +B\cos \left( \log t\right) $\end{document} </tex-math></disp-formula></p> <p>as$ \ t\rightarrow \infty, \ $where $ A, \ B $ are constants. Moreover, for any two numbers $ \alpha &lt; \beta, \ $we are also able to construct a solution satisfying the oscillation limits</p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \liminf\limits_{t\rightarrow \infty}y\left( x,t\right) = \alpha,\ \ \ \limsup\limits _{t\rightarrow \infty}y\left( x,t\right) = \beta,\ \ \ x\in K $\end{document} </tex-math></disp-formula></p> <p>on any compact subset$ \ K\subset \mathbb{R}. $</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document