scholarly journals Inelastic neutron scattering spectroscopy of amino acids

2008 ◽  
Vol 22 (4) ◽  
pp. 297-307 ◽  
Author(s):  
Stewart F. Parker ◽  
Parvez I. Haris

A combination of infrared, Raman and inelastic neutron scattering (INS) spectroscopies are used to provide complete vibrational spectra of several amino acids and dipeptides. The amino acids studied were glycine, alanine, glutamine, cysteine, methionine and phenylalanine and the dipeptides studied were Gly–Gln and Gly–Ala. The findings of this study have shown how the complementarity of infrared, Raman and INS spectroscopies can be exploited to provide complete vibrational spectra of amino acids and peptides. In particular, the strengths of INS spectroscopy are highlighted: the absence of selection rules, that hydrogenic motions are emphasised, the ready access to the low energy regime (<400 cm−1) and the straightforward calculation of intensities. In the future, it should be possible to apply this approach to the study of larger peptides as well as proteins.

RSC Advances ◽  
2018 ◽  
Vol 8 (42) ◽  
pp. 23875-23880 ◽  
Author(s):  
Stewart F. Parker

Inelastic neutron scattering spectroscopy has detected all of the internal modes of borazine, including the infrared and Raman forbidden modes.


2003 ◽  
Vol 81 (1-2) ◽  
pp. 107-114 ◽  
Author(s):  
O Yamamuro ◽  
T Matsuo ◽  
I Tsukushi ◽  
N Onoda-Yamamuro

Amorphous SF6 hydrate (SF6·17H2O) was prepared by depositing the mixed vapor onto a substrate kept at about 8 K. The inelastic neutron-scattering spectra of the as-deposited sample and those annealed at about 120 and 150 K were measured at 50 K in the energy range below 100 meV. The first two samples were considered to be in amorphous states while the third one was in a crystalline state. The librational frequency of the water molecule (at around 60 meV) is smaller in the order of (as-deposited sample) < (annealed sample) < (crystalline sample). This indicates that the strength of the intermolecular hydrogen bonds is (crystalline sample) > (annealed sample) > (as-deposited sample). The spectra below 10 meV were compared with our previous data of pure vapor-deposited amorphous ices and those doped with methanol (CD3OH). The low-energy excitation (E < 6 meV) differed drastically depending on the dopants, i.e., the scattering intensity was enhanced by methanol doping but reduced by SF6 doping. This may be because the hydrogen-bond formation was hindered by methanol doping but promoted rather more by SF6 doping because of the hydrophobic interaction as in clathrate hydrates. PACS Nos.: 61.12Ex, 63.50tx


2000 ◽  
Vol 98 (9) ◽  
pp. 567-572 ◽  
Author(s):  
B. PACI ◽  
M. S. DELEUZE ◽  
R. CACIUFFO ◽  
A. ARDUINI ◽  
F. ZERBETTO

1997 ◽  
Vol 106 (8) ◽  
pp. 2997-3002 ◽  
Author(s):  
Osamu Yamamuro ◽  
Itaru Tsukushi ◽  
Takasuke Matsuo ◽  
Kiyoshi Takeda ◽  
Toshiji Kanaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document