inelastic neutron
Recently Published Documents


TOTAL DOCUMENTS

2769
(FIVE YEARS 203)

H-INDEX

81
(FIVE YEARS 8)

2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Jun-Qing Cheng ◽  
Jun Li ◽  
Zijian Xiong ◽  
Han-Qing Wu ◽  
Anders W. Sandvik ◽  
...  

AbstractUsing quantum Monte Carlo, exact diagonalization, and perturbation theory, we study the spectrum of the S = 1/2 antiferromagnetic Heisenberg trimer chain by varying the ratio g = J2/J1 of the intertrimer and intratrimer coupling strengths. The doublet ground states of trimers form effective interacting S = 1/2 degrees of freedom described by a Heisenberg chain. Therefore, the conventional two-spinon continuum of width ∝ J1 when g = 1 evolves into to a similar continuum of width ∝ J2 when g → 0. The intermediate-energy and high-energy modes are termed doublons and quartons which fractionalize with increasing g to form the conventional spinon continuum. In particular, at g ≈ 0.716, the gap between the low-energy spinon branch and the high-energy band with mixed doublons, quartons, and spinons closes. These features should be observable in inelastic neutron scattering experiments if a quasi-one-dimensional quantum magnet with the linear trimer structure and J2 < J1 can be identified. Our results may open a window for exploring the high-energy fractional excitations.


Author(s):  
R S Fishman ◽  
George Ostrouchov ◽  
Feng Ye

Abstract This work describes two methods to fit the inelastic neutron-scattering spectrum S(q, ω) with wavector q and frequency ω. The common and well-established method extracts the experimental spin-wave branches ωn(q) from the measured spectra S(q ,ω) and then minimizes the difference between the observed and predicted frequencies. When n branches of frequencies are predicted but the measured frequencies overlap to produce only m < n branches, the weighted average of the predicted frequencies must be compared to the observed frequencies. A penalty is then exacted when the width of the predicted frequencies exceeds the width of the observed frequencies. The second method directly compares the measured and predicted intensities S(q ,ω) over a grid {q i , ωj} in wavevector and frequency space. After subtracting background noise from the observed intensities, the theoretical intensities are scaled by a simple wavevector-dependent function that reflects the instrumental resolution. The advantages and disadvantages of each approach are demonstrated by studying the open honeycomb material Tb2Ir3Ga9.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 475
Author(s):  
Mariela M. Nolasco ◽  
Paulo J. A. Ribeiro-Claro ◽  
Pedro D. Vaz

The structure and dynamics of crystalline 4-(dimethylamino) benzaldehyde, 4DMAB, are assessed through INS spectroscopy combined with periodic DFT calculations. The excellent agreement between experimental and calculated spectra is the basis for a reliable assignment of INS bands. The external phonon modes of crystalline 4DMAB are quite well described by the simulated spectrum, as well as the modes involving low-frequency molecular vibrations. Crystal field splitting is predicted and observed for the modes assigned to the dimethylamino group. Concerning the torsional motion of methyl groups, four individual bands are identified and assigned to specific methyl groups in the asymmetric unit. The torsional frequencies of the four methyl groups in the asymmetric unit fall in a region of ca. 190 ± 20 cm−1, close to the range of values observed for methyl groups bonding to unsaturated carbon atoms. The hybridization state of the X atom in X-CH3 seems to play a key role in determining the methyl torsional frequency.


2022 ◽  
Author(s):  
Ranjan Mittal ◽  
Sajan Kumar ◽  
Mayanak K. Gupta ◽  
Sanjay Kumar Mishra ◽  
Sanghamitra Mukhopadhyay ◽  
...  

We have performed quasielastic and inelastic neutron scattering (QENS and INS) measurements from 300 K to 1173 K to investigate the Na-diffusion and underlying host dynamics in Na2Ti3O7. The QENS...


2022 ◽  
Vol 130 (1) ◽  
pp. 28
Author(s):  
Г.С. Шакуров ◽  
Б.З. Малкин ◽  
Р.Г. Батулин ◽  
А.Г. Киямов

EPR spectra of impurity Ho3+ ions in oriented SrY2O4 single-crystals are registered at the temperature 4.2 K in the frequency range from 70 to 180 GHz. The results of measurements evidence for the substitution of Ho3+ ions for the Y3+ ions at the structurally nonequivalent sites R1 and R2 with the local Cs point symmetry. The values of g-factors, hyperfine structure constants and the energy gaps berween the ground and the first excited non-degenherate crystal-field sublevels of the ground 5I8 multiplet are determined. The observed specific features of the ground states of Но3+ ions (non-Kramers doublets with the zero-field splittings of 4.30 and 1.67 cm-1) open a possibility to identify transitions in optical spectra of SrY2O4:Ho and inelastic neutron scattering spectra of SrHo2O4 crystals.


2021 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Félix J. Villacorta ◽  
Damián Martín Rodríguez ◽  
Mads Bertelsen ◽  
Heloisa N. Bordallo

To boost the science case of MIRACLES, the time-of-flight backscattering spectrometer at the European Spallation Source (ESS), an optimized neutron guide system, is proposed. This systematic study resulted in an enhancement in the transport of cold neutrons, compared with the previous conceptual design, with wavelengths ranging from λ = 2 Å to 20 Å along the 162.5-m distance from source to sample. This maintained the undisturbed main focus of the instrument, viz, to carry out quasielastic and inelastic neutron scattering (QENS and INS) experiments on a large dynamic range and for both energy-gain and energy-loss sides. To improve the collection of cold neutrons from the source and direct them to the sample position, the vertical geometry was adjusted to an adapted version of a ballistic elliptical profile. Its horizontal geometry was conceived to: (i) keep the high-resolution performance of the instrument, and (ii) minimize the background originating from fast and thermal neutrons. To comply with the first requirement, a narrow guide section at the pulse shaping chopper position has been implemented. To fulfil the second, a curved guide segment has been chosen to suppress neutrons with wavelengths λ < 2 Å. Subsequent tailoring of the phase space provided an efficient transport of cold neutrons along the beamline to reach a 3 × 3 cm2 sample. Finally, additional calculations were performed to present a potential upgrade, with the exchange of the final segment, to focus on samples of approximately 1 × 1 cm2; the proposal anticipates a flux increase of 70% in this 1 cm2 sample area.


Medicina ◽  
2021 ◽  
Vol 57 (12) ◽  
pp. 1343
Author(s):  
Eugene Mamontov ◽  
Luke L. Daemen ◽  
Eric Novak ◽  
Matthew B. Stone

Background and Objectives: As an mRNA-based vaccine, the Pfizer-BioNTech COVID-19 vaccine has stringent cold storage requirements to preserve functionality of the mRNA active ingredient. To this end, lipid components of the vaccine formulation play an important role in stabilizing and protecting the mRNA molecule for long-term storage. The purpose of the current study was to measure molecular-level dynamics as a function of temperature in the Pfizer-BioNTech COVID-19 vaccine to gain microscopic insight into its thermal stability. Materials and Methods: We used quasielastic and inelastic neutron scattering to probe (1) the vaccine extracted from the manufacturer-supplied vials and (2) unperturbed vaccine in the original manufacturer-supplied vials. The latter measurement was possible due to the high penetrative power of neutrons. Results: Upon warming from the low-temperature frozen state, the vaccine in its original form exhibits two-step melting, indicative of a two-phase morphology. Once the melting is completed (above 0 °C), vaccine re-freezing cannot restore its original two-phase state. This observation is corroborated by the changes in the molecular vibrational spectra. The molecular-level mobility measured in the resulting single-phase state of the re-frozen vaccine greatly exceeds the mobility measured in the original vaccine. Conclusions: Even a brief melting (above 0 °C) leads to an irreversible alteration of the two-phase morphology of the original vaccine formulation. Re-freezing of the vaccine results in a one-phase morphology with much increased molecular-level mobility compared to that in the original vaccine, suggesting irreversible deterioration of the vaccine’s in-storage stability. Neutron scattering can be used to distinguish between the vibrational spectra characteristic of the original and deteriorated vaccines contained in the unperturbed original manufacturer-supplied vials.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph A. M. Paddison ◽  
Georg Ehlers ◽  
Andrew B. Cairns ◽  
Jason S. Gardner ◽  
Oleg A. Petrenko ◽  
...  

AbstractIn partially ordered magnets, order and disorder coexist in the same magnetic phase, distinct from both spin liquids and spin solids. Here, we determine the nature of partial magnetic ordering in the canonical frustrated antiferromagnet Gd2Ti2O7, in which Gd3+ spins occupy a pyrochlore lattice. Using single-crystal neutron-diffraction measurements in applied magnetic field, magnetic symmetry analysis, inelastic neutron-scattering measurements, and spin-wave modeling, we show that its low-temperature magnetic structure involves two propagation vectors (2-k structure) with suppressed ordered magnetic moments and enhanced spin-wave fluctuations. Our experimental results are consistent with theoretical predictions of thermal fluctuation-driven order in Gd2Ti2O7, and reveal that inelastic neutron-scattering measurements on powder samples can solve the longstanding problem of distinguishing single-k and multi-k magnetic structures.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1434
Author(s):  
Indri Badria Adilina ◽  
Robert Ronal Widjaya ◽  
Luthfiana Nurul Hidayati ◽  
Edi Supriadi ◽  
Muhammad Safaat ◽  
...  

Biochar (BCR) was obtained from the pyrolysis of a palm-oil-empty fruit bunch at 773 K for 2 h and used as a catalyst for the hydrodeoxygenation (HDO) of guaiacol (GUA) as a bio-oil model compound. Brunauer–Emmet–Teller surface area analysis, NH3 and CO2-temperature-programmed desorption, scanning electron microscope–dispersive X-ray spectroscopy, CHN analysis and X-ray fluorescence spectroscopy suggested that macroporous and mesoporous structures were formed in BCR with a co-presence of hydrophilic and hydrophobic sites and acid–base behavior. A combination of infrared, Raman and inelastic neutron scattering (INS) was carried out to achieve a complete vibrational assignment of BCR. The CH–OH ratio in BCR is ~5, showing that the hydroxyl functional groups are a minority species. There was no evidence for any aromatic C–H stretch modes in the infrared, but they are clearly seen in the INS and are the majority species, with a ratio of sp3–CH:sp2–CH of 1:1.3. The hydrogen bound to sp2–C is largely present as isolated C–H bonds, rather than adjacent C–H bonds. The Raman spectrum shows the characteristic G band (ideal graphitic lattice) and three D bands (disordered graphitic lattice, amorphous carbon, and defective graphitic lattice) of sp2 carbons. Adsorbed water in BCR is present as disordered layers on the surface rather than trapped in voids in the material and could be removed easily by drying prior to catalysis. Catalytic testing demonstrated that BCR was able to catalyze the HDO of GUA, yielding phenol and cresols as the major products. Phenol was produced both from the direct demethoxylation of GUA, as well as through the demethylation pathway via the formation of catechol as the intermediate followed by deoxygenation.


Sign in / Sign up

Export Citation Format

Share Document