scholarly journals Analysis of Laminated Shells by Murakami’s Zig-Zag Theory and Radial Basis Functions Collocation

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
D. A. Maturi ◽  
A. J. M. Ferreira ◽  
A. M. Zenkour ◽  
D. S. Mashat

The static and free vibration analysis of laminated shells is performed by radial basis functions collocation, according to Murakami’s zig-zag (ZZ) function (MZZF) theory . The MZZF theory accounts for through-the-thickness deformation, by considering a ZZ evolution of the transverse displacement with the thickness coordinate. The equations of motion and the boundary conditions are obtained by Carrera’s Unified Formulation and further interpolated by collocation with radial basis functions.




2005 ◽  
Vol 02 (01) ◽  
pp. 15-31 ◽  
Author(s):  
A. J. M. FERREIRA

A study of free vibration of Timoshenko beams and Mindlin plates is presented whereby the analysis is based on the radial basis function method. Various approaches for computing eigenvalues using radial basis functions are also discussed together with the numerical results for various thickness-to-length ratios.



Author(s):  
E. F. Joubaneh ◽  
O. R. Barry

This paper presents the free vibration analysis of a sandwich beam with a tip mass using higher order sandwich panel theory (HSAPT). The governing equations of motion and boundary conditions are obtained using Hamilton’s principle. General Differential Quadrature (GDQ) is employed to solve the system governing equations of motion. The natural frequencies and mode shapes of the system are presented and Ansys simulation is performed to validate the results. Various boundary conditions are also employed to examine the natural frequencies of the sandwich beam without tip mass and the results are compared with those found in the literature. Parametric studies are conducted to examine the effect of key design parameters on the natural frequencies of the sandwich beam with and without tip mass.



Sign in / Sign up

Export Citation Format

Share Document