governing equations
Recently Published Documents


TOTAL DOCUMENTS

3189
(FIVE YEARS 681)

H-INDEX

67
(FIVE YEARS 12)

Author(s):  
S. Hosseinzadeh ◽  
Kh. Hosseinzadeh ◽  
A. Hasibi ◽  
D.D. Ganji

In this paper, the flow of non-Newtonian blood fluid with nanoparticles inside a vessel with a porous wall in presence of a magnetic field have been investigated. This study aimed to investigate various parameters such as magnetic field and porosity on velocity, temperature, and concentration profiles. In this research, three different models (Vogel, Reynolds and Constant) for viscosity have been used as an innovation. The governing equations are solved by Akbari-Ganji's Method (AGM) analytical method and the Finite Element Method (FEM) is used to better represent the phenomena in the vessel. The results show that increasing the Gr number, porosity and negative pressure increase the blood velocity and increasing the magnetic field intensity decrease the blood velocity.


Author(s):  
Ali Mohtashami ◽  
Seyed Arman Hashemi Monfared ◽  
Gholamreza Azizyan ◽  
Abolfazl Akbarpour

Abstract The complicated behavior of groundwater system in an arid aquifer is generally studied by solving the governing equations using either analytical or numerical methods. In this regard, analytical methods are just for some aquifers with regular boundaries. Numerical methods used for this aim are finite difference (FDM) and finite element methods (FEM) which are engaged for some simple aquifers. Using them in the complex cases with irregular boundaries has some shortcomings, depended on meshes. In this study, meshless local Petrov-Galerkin (MLPG) method based on the moving kriging (MK) approximation function is used to simulate groundwater flow in steady state over three aquifers, two standard and a real field aquifer. Moving kriging function known as new function which reduces the uncertain parameter. For the first aquifer, a simple rectangular aquifer, MLPG-MK indicates good agreement with analytical solutions. In the second one, aquifer conditions get more complicated. However, MLPG-MK reveals results more accurate than FDM. RMSE for MLPG-MK and FDM is 0.066 and 0.322 m respectively. In the third aquifer, Birjand unconfined aquifer located in Iran is investigated. In this aquifer, there are 190 extraction wells. The geometry of the aquifer is irregular as well. With this challenging issues, MLPG-MK again shows satisfactory accuracy. As the RMSE for MLPG-MK and FDM are 0.483 m and 0.566 m. therefore, planning for this aquifer based on the MLPG-MK is closer to reality.


Author(s):  
Anil Kumar ◽  
Pentyala Srinivasa Rao

Abstract This article deals with the heat transfer enhancement due to buoyancy force in a partially heated square enclosure filled with nanofluids. The model is developed to analyse the behaviour of nanofluids taking into account of volume fraction and stretching parameter, when square horizontal walls are moving in opposite directions to each other. Implicit alternate direct finite difference method has been used to solve the governing equations of vorticity, energy, and kinematics. Graphically investigated the effect of physical pertinent controlling parameters on the dimensionless velocity, streamlines, isothermal, and Nusselt number. The obtained numerical solution achieves the best configuration for Rayleigh number 103 ≤ Ra ≤ 105, stretching parameter 0 ≤ τ ≤ 2.5, and volume fraction 0 ≤ ϕ ≤ 0.2. It is found that the stretching parameter and direction of moving walls affect the fluid flow, flow strength, and heat transfer in the cavity.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 421
Author(s):  
Yinyin Wang ◽  
Suad Hassan Danook ◽  
Hussein A.Z. AL-bonsrulah ◽  
Dhinakaran Veeman ◽  
Fuzhang Wang

Water is essential for food security, industrial output, ecological sustainability, and a country’s socioeconomic progress. Water scarcity and environmental concerns have increased globally in recent years as a result of the ever-increasing population, rapid industrialization and urbanization, and poor water resource management. Even though there are sufficient water resources, their uneven circulation leads to shortages and the requirement for portable fresh water. More than two billion people live in water-stressed areas. Hence, the present study covers all of the research based on water extraction from atmospheric air, including theoretical and practical (different experimental methods) research. A comparison between different results is made. The calculated efficiency of the systems used to extract water from atmospheric air by simulating the governing equations is discussed. The effects of different limitations, which affect and enhance the collectors’ efficiency, are studied. This research article will be very useful to society and will support further research on the extraction of water in arid zones.


In this work, bifurcation characteristics of unsteady, viscous, Newtonian laminar flow in two-dimensional sudden expansion and sudden contraction-expansion channels have been studied for different values of expansion ratio. The governing equations have been solved using finite volume method and FLUENT software has been employed to visualize the simulation results. Three different mesh studies have been performed to calculate critical Reynolds number (Recr) for different types of bifurcation phenomena. It is found that Recr decreases with the increase in expansion ratio (ER).


2022 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Maria Neagu

This paper presents the analysis of the natural convection process that takes place near a vertical plane wall embedded in a constant temperature and linearly mass stratified fluid (the Prandtl number and the Smith number are smaller than 1.0, while the Lewis number is greater than 1.0). The wall has a constant temperature, while the flux of a certain constituent is constant at this boundary. The scale analysis and the finite differences method are used as techniques of work. The scale analysis proves the existence, at equilibrium, of heat and/or mass driven convection regimes along the wall. The finite differences method is used solve the governing equations and to verify the scale analysis results using two particular parameters sets.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 20
Author(s):  
Alexei M. Frolov

The governing equations of Maxwell electrodynamics in multi-dimensional spaces are derived from the variational principle of least action, which is applied to the action function of the electromagnetic field. The Hamiltonian approach for the electromagnetic field in multi-dimensional pseudo-Euclidean (flat) spaces has also been developed and investigated. Based on the two arising first-class constraints, we have generalized to multi-dimensional spaces a number of different gauges known for the three-dimensional electromagnetic field. For multi-dimensional spaces of non-zero curvature the governing equations for the multi-dimensional electromagnetic field are written in a manifestly covariant form. Multi-dimensional Einstein’s equations of metric gravity in the presence of an electromagnetic field have been re-written in the true tensor form. Methods of scalar electrodynamics are applied to analyze Maxwell equations in the two and one-dimensional spaces.


Author(s):  
Amirhossein Ghasemikaram ◽  
Abbas Mazidi ◽  
S. Ahmad Fazelzadeh ◽  
Dieter Scholz

The aim of this paper is to present a flutter analysis of a 3D Box-Wing Aircraft (BWA) configuration. The box wing structure is considered as consisting of two wings (front and rear wings) connected with a winglet. Plunge and pitch motions are considered for each wing and the winglet is modeled by a longitudinal spring. In order to exert the effect of the wing-joint interactions (bending and torsion coupling), two ends of the spring are located on the gravity centers of the wings tip sections. Wagner unsteady model is used to simulate the aerodynamic force and moment on the wing. The governing equations are extracted via Hamilton’s variational principle. To transform the resulting partial integro-differential governing equations into a set of ordinary differential equations, the assumed modes method is utilized. In order to confirm the aerodynamic model, the flutter results of a clean wing are compared and validated with the previously published results. Also, for the validation, the 3D box wing aircraft configuration flutter results are compared with MSC NASTRAN software and good agreement is observed. The effects of design parameters such as the winglet tension stiffness, the wing sweep and dihedral angles, and the aircraft altitude on the flutter velocity and frequency are investigated. The results reveal that physical and geometrical properties of the front and rear wings and also the winglet design have a significant influence on BWA aeroelastic stability boundary.


Sign in / Sign up

Export Citation Format

Share Document