scholarly journals Advanced Harmony Search with Ant Colony Optimization for Solving the Traveling Salesman Problem

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ho-Yoeng Yun ◽  
Suk-Jae Jeong ◽  
Kyung-Sup Kim

We propose a novel heuristic algorithm based on the methods of advanced Harmony Search and Ant Colony Optimization (AHS-ACO) to effectively solve the Traveling Salesman Problem (TSP). The TSP, in general, is well known as an NP-complete problem, whose computational complexity increases exponentially by increasing the number of cities. In our algorithm, Ant Colony Optimization (ACO) is used to search the local optimum in the solution space, followed by the use of the Harmony Search to escape the local optimum determined by the ACO and to move towards a global optimum. Experiments were performed to validate the efficiency of our algorithm through a comparison with other algorithms and the optimum solutions presented in the TSPLIB. The results indicate that our algorithm is capable of generating the optimum solution for most instances in the TSPLIB; moreover, our algorithm found better solutions in two cases (kroB100 and pr144) when compared with the optimum solution presented in the TSPLIB.

Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 884
Author(s):  
Petr Stodola ◽  
Karel Michenka ◽  
Jan Nohel ◽  
Marian Rybanský

The dynamic traveling salesman problem (DTSP) falls under the category of combinatorial dynamic optimization problems. The DTSP is composed of a primary TSP sub-problem and a series of TSP iterations; each iteration is created by changing the previous iteration. In this article, a novel hybrid metaheuristic algorithm is proposed for the DTSP. This algorithm combines two metaheuristic principles, specifically ant colony optimization (ACO) and simulated annealing (SA). Moreover, the algorithm exploits knowledge about the dynamic changes by transferring the information gathered in previous iterations in the form of a pheromone matrix. The significance of the hybridization, as well as the use of knowledge about the dynamic environment, is examined and validated on benchmark instances including small, medium, and large DTSP problems. The results are compared to the four other state-of-the-art metaheuristic approaches with the conclusion that they are significantly outperformed by the proposed algorithm. Furthermore, the behavior of the algorithm is analyzed from various points of view (including, for example, convergence speed to local optimum, progress of population diversity during optimization, and time dependence and computational complexity).


1998 ◽  
Vol 01 (02n03) ◽  
pp. 149-159 ◽  
Author(s):  
Hozefa M. Botee ◽  
Eric Bonabeau

Ant Colony Optimization (ACO) is a promising new approach to combinatorial optimization. Here ACO is applied to the traveling salesman problem (TSP). Using a genetic algorithm (GA) to find the best set of parameters, we demonstrate the good performance of ACO in finding good solutions to the TSP.


Sign in / Sign up

Export Citation Format

Share Document