scholarly journals Collision-Free and Energy-Saving Trajectory Planning for Large-Scale Redundant Manipulator Using Improved PSO

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Min Jin ◽  
Dan Wu

The large-scale boom system, such as the five-arm concrete pump truck with the arm length of 36–65 meters, usually operates in an unknown dynamic outdoor environment. The motion safety and the energy consumption are thus the two vital measurements to the effectiveness of the trajectory planning for the large-scale boom system. Due to the redundancy of the large-scale boom system and some drawbacks of the original particle swarm optimization (PSO) algorithm, an improved PSO algorithm is presented to solve the inverse kinematic problem of the redundant large-scale boom system. By the improved PSO algorithm, the energy-saving trajectory planning of the large-scale boom system that operates in a workspace without obstacles and with obstacles is optimized, which considers different important degrees of the subgoals, respectively. The optimal results from the simulation study and the practical application verify the effectiveness of the proposed planning strategy. At the same time, the performance of the improved strategy is compared with that of the traditional, and the superiority is further demonstrated.

2021 ◽  
Vol 1820 (1) ◽  
pp. 012185
Author(s):  
Shunjie Han ◽  
Xinchao Shan ◽  
Jinxin Fu ◽  
Weijin Xu ◽  
Hongyan Mi

2021 ◽  
Vol 11 (2) ◽  
pp. 563
Author(s):  
Tuong Phuoc Tho ◽  
Nguyen Truong Thinh

In construction, a large-scale 3D printing method for construction is used to build houses quickly, based on Computerized Aid Design. Currently, the construction industry is beginning to apply quite a lot of 3D printing technologies to create buildings that require a quick construction time and complex structures that classical methods cannot implement. In this paper, a Cable-Driven Parallel Robot (CDPR) is described for the 3D printing of concrete for building a house. The CDPR structures are designed to be suitable for 3D printing in a large workspace. A linear programming algorithm was used to quickly calculate the inverse kinematic problem with the force equilibrium condition for the moving platform; this method is suitable for the flexible configuration of a CDPR corresponding to the various spaces. Cable sagging was also analyzed by the Trust-Region-Dogleg algorithm to increase the accuracy of the inverse kinematic problem for controlling the robot to perform basic trajectory interpolation movements. The paper also covers the design and analysis of a concrete extruder for the 3D printing method. The analytical results are experimented with based on a prototype of the CDPR to evaluate the work ability and suitability of this design. The results show that this design is suitable for 3D printing in construction, with high precision and a stable trajectory printing. The robot configuration can be easily adjusted and calculated to suit the construction space, while maintaining rigidity as well as an adequate operating space. The actuators are compact, easy to disassemble and move, and capable of accommodating a wide variety of dimensions.


2011 ◽  
Vol 127 ◽  
pp. 360-367 ◽  
Author(s):  
Xiao Dong Kang ◽  
Gang Huang ◽  
Xian Li Cao ◽  
Xiang Zhou

This paper takes the five –link concrete pump boom as the research object, and transforms its trajectory planning issue into a multi-object optimization problem. Using intelligent hill climbing algorithm and genetic algorithm, and integrating them closely to ensure real-time online planning for the pump truck effectively, and make the planned motion trajectory for the boom is global optimized under particular constrained conditions. Simulation and performance comparison experiments show that this hybrid algorithm is practical and effective, which offers a new approach for the trajectory planning problem of concrete pump truck.


2013 ◽  
Vol 415 ◽  
pp. 3-8
Author(s):  
Da Wei Huang ◽  
Bai Yan Liu ◽  
Ru Wei Zhang

The follow-up control of concrete pump truck is in order to solve the problem that whole boom follows the movement of boom end under the artificial traction. Focus on real-time detection of boom end azimuth change and inverse kinematic problems of redundant boom system, two-axis gravitational accelerometer is used to detect azimuthal variation of boom end, and the best motion trajectory of boom is determined by solving constrained nonlinear optimization function which takes minimum displacement distance of barycentre for the whole boom as the optimization goal. At last, relative azimuth and translation of boom end, rotation of boom are solved together to make translation and rotation of boom being synchronization. In this way to ensure whole boom follows the artificial traction in theory. In order to verify the discussion above, matlab is used to simulate several different working conditions for the follow-up control of boom.


Sign in / Sign up

Export Citation Format

Share Document