scholarly journals Bifurcation of Limit Cycles and Center Conditions for Two Families of Kukles-Like Systems with Nilpotent Singularities

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Peiluan Li ◽  
Yusen Wu ◽  
Xiaoquan Ding

We solve theoretically the center problem and the cyclicity of the Hopf bifurcation for two families of Kukles-like systems with their origins being nilpotent and monodromic isolated singular points.




2016 ◽  
Vol 26 (09) ◽  
pp. 1650149 ◽  
Author(s):  
Chaoxiong Du ◽  
Yirong Liu ◽  
Wentao Huang

Our work is concerned with a class of three-dimensional quadratic systems with two symmetric singular points which can yield ten small limit cycles. The method used is singular value method, we obtain the expressions of the first five focal values of the two singular points that the system has. Both singular symmetric points can be fine foci of fifth order at the same time. Moreover, we obtain that each one bifurcates five small limit cycles under a certain coefficient perturbed condition, consequently, at least ten limit cycles can appear by simultaneous Hopf bifurcation.



2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Yanqin Xiong ◽  
Maoan Han

We consider a class of discontinuous Liénard systems and study the number of limit cycles bifurcated from the origin when parameters vary. We establish a method of studying cyclicity of the system at the origin. As an application, we discuss some discontinuous Liénard systems of special form and study the cyclicity near the origin.





2015 ◽  
Vol 39 (17) ◽  
pp. 5200-5215 ◽  
Author(s):  
Chaoxiong Du ◽  
Wentao Huang ◽  
Qi Zhang


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Wentao Huang ◽  
Ting Chen ◽  
Tianlong Gu

Center conditions and the bifurcation of limit cycles for a seven-degree polynomial differential system in which the origin is a nilpotent critical point are studied. Using the computer algebra system Mathematica, the first 14 quasi-Lyapunov constants of the origin are obtained, and then the conditions for the origin to be a center and the 14th-order fine focus are derived, respectively. Finally, we prove that the system has 14 limit cycles bifurcated from the origin under a small perturbation. As far as we know, this is the first example of a seven-degree system with 14 limit cycles bifurcated from a nilpotent critical point.



2018 ◽  
Vol 28 (06) ◽  
pp. 1850069 ◽  
Author(s):  
Yusen Wu ◽  
Laigang Guo ◽  
Yufu Chen

In this paper, we consider a class of Liénard systems, described by [Formula: see text], with [Formula: see text] symmetry. Particular attention is given to the existence of small-amplitude limit cycles around fine foci when [Formula: see text] is an odd polynomial function and [Formula: see text] is an even function. Using the methods of normal form theory, we found some new and better lower bounds of the maximal number of small-amplitude limit cycles in these systems. Moreover, a complete classification of the center conditions is obtained for such systems.



2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Feng Li ◽  
Jianlong Qiu

A class of polynomial differential systems with high-order nilpotent critical points are investigated in this paper. Those systems could be changed into systems with an element critical point. The center conditions and bifurcation of limit cycles could be obtained by classical methods. Finally, an example was given; with the help of computer algebra system MATHEMATICA, the first 5 Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 5 small amplitude limit cycles created from the high-order nilpotent critical point is also proved.



Sign in / Sign up

Export Citation Format

Share Document