Hopf Bifurcation of Z2-Equivariant Generalized Liénard Systems

2018 ◽  
Vol 28 (06) ◽  
pp. 1850069 ◽  
Author(s):  
Yusen Wu ◽  
Laigang Guo ◽  
Yufu Chen

In this paper, we consider a class of Liénard systems, described by [Formula: see text], with [Formula: see text] symmetry. Particular attention is given to the existence of small-amplitude limit cycles around fine foci when [Formula: see text] is an odd polynomial function and [Formula: see text] is an even function. Using the methods of normal form theory, we found some new and better lower bounds of the maximal number of small-amplitude limit cycles in these systems. Moreover, a complete classification of the center conditions is obtained for such systems.

2021 ◽  
Vol 31 (12) ◽  
pp. 2150176
Author(s):  
Jiayi Chen ◽  
Yun Tian

In this paper, we obtain an upper bound for the number of small-amplitude limit cycles produced by Hopf bifurcation in one particular type of rational Liénard systems in the form of [Formula: see text], [Formula: see text], where [Formula: see text] and [Formula: see text] are polynomials in [Formula: see text] with degrees [Formula: see text] and [Formula: see text], respectively. Furthermore, we show that the upper bound presented here is sharp in the case of [Formula: see text].


2012 ◽  
Vol 22 (08) ◽  
pp. 1250203 ◽  
Author(s):  
JING SU ◽  
JUNMIN YANG ◽  
MAOAN HAN

As we know, Liénard system is an important model of nonlinear oscillators, which has been widely studied. In this paper, we study the Hopf bifurcation of an analytic Liénard system by perturbing a nilpotent center. We develop an efficient method to compute the coefficients bl appearing in the expansion of the first order Melnikov function by finding a set of equivalent quantities B2l+1 which are able to calculate directly and can be used to study the number of small-amplitude limit cycles of the system. As an application, we investigate some polynomial Liénard systems, obtaining a lower bound of the maximal number of limit cycles near a nilpotent center.


2016 ◽  
Vol 26 (05) ◽  
pp. 1650079 ◽  
Author(s):  
Wenjing Zhang ◽  
Pei Yu

This paper is concerned with bifurcation and stability in an autoimmune model, which was established to study an important phenomenon — blips arising from such models. This model has two equilibrium solutions, disease-free equilibrium and disease equilibrium. The positivity of the solutions of the model and the global stability of the disease-free equilibrium have been proved. In this paper, we particularly focus on Hopf bifurcation which occurs from the disease equilibrium. We present a detailed study on the use of center manifold theory and normal form theory, and derive the normal form associated with Hopf bifurcation, from which the approximate amplitude of the bifurcating limit cycles and their stability conditions are obtained. Particular attention is also paid to the bifurcation of multiple limit cycles arising from generalized Hopf bifurcation, which may yield bistable phenomenon involving equilibrium and oscillating motion. This result may explain some complex dynamical behavior in real biological systems. Numerical simulations are compared with the analytical predictions to show a very good agreement.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Juan Liu ◽  
Zizhen Zhang

Abstract We investigate a delayed epidemic model for the propagation of worm in wireless sensor network with two latent periods. We derive sufficient conditions for local stability of the worm-induced equilibrium of the system and the existence of Hopf bifurcation by regarding different combination of two latent time delays as the bifurcation parameter and analyzing the distribution of roots of the associated characteristic equation. In particular, we investigate the direction and stability of the Hopf bifurcation by means of the normal form theory and center manifold theorem. To verify analytical results, we present numerical simulations. Also, the effect of some influential parameters of sensor network is properly executed so that the oscillations can be reduced and removed from the network.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Ruibin Wei ◽  
Wanjun Xia

AbstractIn this paper, we are concerned with a delayed smoking model in which the population is divided into five classes. Sufficient conditions guaranteeing the local stability and existence of Hopf bifurcation for the model are established by taking the time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria. Furthermore, direction and stability of the Hopf bifurcation are investigated by applying the center manifold theorem and normal form theory. Finally, computer simulations are implemented to support the analytic results and to analyze the effects of some parameters on the dynamical behavior of the model.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Changjin Xu ◽  
Peiluan Li

A four-dimensional neural network model with delay is investigated. With the help of the theory of delay differential equation and Hopf bifurcation, the conditions of the equilibrium undergoing Hopf bifurcation are worked out by choosing the delay as parameter. Applying the normal form theory and the center manifold argument, we derive the explicit formulae for determining the properties of the bifurcating periodic solutions. Numerical simulations are performed to illustrate the analytical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Peiluan Li ◽  
Yusen Wu ◽  
Xiaoquan Ding

We solve theoretically the center problem and the cyclicity of the Hopf bifurcation for two families of Kukles-like systems with their origins being nilpotent and monodromic isolated singular points.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xiang Li ◽  
Ranchao Wu

A new 4D hyperchaotic system is constructed based on the Lorenz system. The compound structure and forming mechanism of the new hyperchaotic attractor are studied via a controlled system with constant controllers. Furthermore, it is found that the Hopf bifurcation occurs in this hyperchaotic system when the bifurcation parameter exceeds a critical value. The direction of the Hopf bifurcation as well as the stability of bifurcating periodic solutions is presented in detail by virtue of the normal form theory. Numerical simulations are given to illustrate and verify the results.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

This paper is devoted to the study of an SIRS computer virus propagation model with two delays and multistate antivirus measures. We demonstrate that the system loses its stability and a Hopf bifurcation occurs when the delay passes through the corresponding critical value by choosing the possible combination of the two delays as the bifurcation parameter. Moreover, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by means of the center manifold theorem and the normal form theory. Finally, some numerical simulations are performed to illustrate the obtained results.


Sign in / Sign up

Export Citation Format

Share Document