scholarly journals The Degree Analysis of an Inhomogeneous Growing Network with Two Types of Vertices

2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Huilin Huang

We consider an inhomogeneous growing network with two types of vertices. The degree sequences of two different types of vertices are investigated, respectively. We not only prove that the asymptotical degree distribution of typesfor this process is power law with exponent2+1+δqs+β1-qs/αqs, but also give the strong law of large numbers for degree sequences of two different types of vertices by using a different method instead of Azuma’s inequality. Then we determine asymptotically the joint probability distribution of degree for pairs of adjacent vertices with the same type and with different types, respectively.

Author(s):  
Robert B. Griffiths

In quantum physics, the term ‘contextual’ can be used in more than one way. One usage, here called ‘Bell contextual’ since the idea goes back to Bell, is that if A , B and C are three quantum observables, with A compatible (i.e. commuting) with B and also with C , whereas B and C are incompatible, a measurement of A might yield a different result (indicating that quantum mechanics is contextual) depending upon whether A is measured along with B (the { A ,  B } context) or with C (the { A ,  C } context). An analysis of what projective quantum measurements measure shows that quantum theory is Bell non-contextual: the outcome of a particular A measurement when A is measured along with B would have been exactly the same if A had, instead, been measured along with C . A different definition, here called ‘globally (non)contextual’ refers to whether or not there is (non-contextual) or is not (contextual) a single joint probability distribution that simultaneously assigns probabilities in a consistent manner to the outcomes of measurements of a certain collection of observables, not all of which are compatible. A simple example shows that such a joint probability distribution can exist even in a situation where the measurement probabilities cannot refer to properties of a quantum system, and hence lack physical significance, even though mathematically well defined. It is noted that the quantum sample space, a projective decomposition of the identity, required for interpreting measurements of incompatible properties in different runs of an experiment using different types of apparatus, has a tensor product structure, a fact sometimes overlooked. This article is part of the theme issue ‘Contextuality and probability in quantum mechanics and beyond’.


2019 ◽  
Vol 75 (1) ◽  
pp. 142-157 ◽  
Author(s):  
Carmelo Giacovazzo

The standard method of joint probability distribution functions, so crucial for the development of direct methods, has been revisited and updated. It consists of three steps: identification of the reflections which may contribute to the estimation of a given structure invariant or seminvariant, calculation of the corresponding joint probability distribution, and derivation of the conditional distribution of the invariant or seminvariant phase given the values of some diffracted amplitudes. In this article the conditional distributions are derived directly without passing through the second step. A good feature of direct methods is that they may work in the absence of any prior information: that is also their weakness. Different types of prior information have been taken into consideration: interatomic distances, interatomic vectors, Patterson peaks, structural model. The method of directly deriving the conditional distributions has been applied to those cases. Some new formulas have been obtained estimating two-, three- and four-phase invariants. Special attention has been dedicated to the practical aspects of the new formulas, in order to simplify their possible use in direct phasing procedures.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xiaochen Ma ◽  
Qunying Wu

In this article, we research some conditions for strong law of large numbers (SLLNs) for weighted sums of extended negatively dependent (END) random variables under sublinear expectation space. Our consequences contain the Kolmogorov strong law of large numbers and the Marcinkiewicz strong law of large numbers for weighted sums of extended negatively dependent random variables. Furthermore, our results extend strong law of large numbers for some sequences of random variables from the traditional probability space to the sublinear expectation space context.


Sign in / Sign up

Export Citation Format

Share Document