joint probability distribution
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 108)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Bradford D. Loucas ◽  
Igor Shuryak ◽  
Stephen R. Kunkel ◽  
Michael N. Cornforth

The relationship between certain chromosomal aberration (CA) types and cell lethality is well established. On that basis we used multi-fluor in situ hybridization (mFISH) to tally the number of mitotic human lymphocytes exposed to graded doses of gamma rays that carried either lethal or nonlethal CA types. Despite the fact that a number of nonlethal complex exchanges were observed, the cells containing them were seldom deemed viable, due to coincident lethal chromosome damage. We considered two model variants for describing the dose responses. The first assumes independent linear-quadratic (LQ) dose response shapes for the yields of both lethal and nonlethal CAs. The second (simplified) variant assumes that the mean number of nonlethal CAs per cell is proportional to the mean number of lethal CAs per cell, meaning that the shapes and magnitudes of both aberration types differ only by a multiplicative proportionality constant. Using these models allowed us to assemble dose response curves for the frequency of aberration-bearing cells that would be expected to survive. This took the form of a joint probability distribution for cells containing ≥1 nonlethal CAs but having zero lethal CAs. The simplified second model variant turned out to be marginally better supported than the first, and the joint probability distribution based on this model yielded a crescent-shaped dose response reminiscent of those observed for mutagenesis and transformation for cells “at risk” (i.e. not corrected for survival). Among the implications of these findings is the suggestion that similarly shaped curves form the basis for deriving metrics associated with radiation risk models.


Author(s):  
Reza Seifi Majdar ◽  
Hassan Ghassemian

Unlabeled samples and transformation matrix are two main parts of unsupervised and semi-supervised feature extraction (FE) algorithms. In this manuscript, a semi-supervised FE method, locality preserving projection in the probabilistic framework (LPPPF), to find a sufficient number of reliable and unmixed unlabeled samples from all classes and constructing an optimal projection matrix is proposed. The LPPPF has two main steps. In the first step, a number of reliable unlabeled samples are selected based on the training samples, spectral features, and spatial information in the probabilistic framework. In this way, the spectral and spatial probability distribution function is calculated for each unlabeled sample. Therefore, the spectral features and spatial information are integrated together with a joint probability distribution function. Finally, a sufficient number of unlabeled samples with the highest joint probability distribution are selected. In the second step, the selected unlabeled samples are applied to construct the transformation matrix based on the spectral and spatial information of the unlabeled samples. The adjacency graph is improved by using new weights based on spectral and spatial information. This method is evaluated on three data sets: Indian Pines, Pavia University, and Kennedy Space Center (KSC) and compared with some recent and well-known supervised, semi-supervised, and unsupervised FE methods. Various experiments demonstrate the efficiency of the LPPPF in comparison with the other FE methods. LPPPF has also considerable performance with limited training samples.


2021 ◽  
Author(s):  
Samu Mäntyniemi ◽  
Inari Helle ◽  
Ilpo Kojola

Assessment of the Finnish wolf population relies on multiple sources of information. This paper describes how Bayesian inference is used to pool the information contained in different kind of data sets (point observations, non-invasive genetics, known mortalities) for the estimation of the number of territories occupied by family packs and pairs. The output of the assessment model is a joint probability distribution, which describes current knowledge about the number of wolves within each territory. The joint distribution can be used to derive probability distributions for the total number of wolves in all territories and for the pack status within each territory. Most of the data set comprises of both voluntary-provided point observations and DNA samples provided by volunteers and research personnel. The new method reduces the role of expert judgement in the assessment process, providing increased transparency and repeatability.


2021 ◽  
Vol 13 (24) ◽  
pp. 5103
Author(s):  
Jeongeun Won ◽  
Jiyu Seo ◽  
Jeonghoon Lee ◽  
Okjeong Lee ◽  
Sangdan Kim

Since vegetation is closely related to a variety of hydrological factors, the vegetation condition during a drought is greatly affected by moisture supply or moisture demand from the atmosphere. However, since feedback between vegetation and climate in the event of drought is very complex, it is necessary to construct a joint probability distribution that can describe and investigate the interrelationships between them. In other words, it is required to understand the interaction between vegetation and climate in terms of joint probability. In this study, the possibility of drought stress experienced by vegetation under various conditions occurring during drought was investigated by dividing drought into two aspects (atmospheric moisture supply and moisture demand). Meteorological drought indices that explain different aspects of drought and vegetation-related drought indexes that describe the state of vegetation were estimated using data remotely sensed by satellites in parts of Far East Asia centered on South Korea. Bivariate joint probability distribution modeling was performed from vegetation drought index and meteorological drought index using Copula. It was found that the relationship between the vegetation drought index and the meteorological drought index has regional characteristics and there is also a seasonal change. From the copula-based model, it was possible to quantify the conditional probability distribution for the drought stress of vegetation under meteorological drought scenarios that occur from different causes. Through this, by mapping the vulnerability of vegetation to meteorological drought in the study area, it was possible to spatially check how the vegetation responds differently depending on the season and meteorological causes. The probabilistic mapping of vegetation vulnerability to various aspects of meteorological drought may provide useful information for establishing mitigation strategies for ecological drought.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3256
Author(s):  
Rui Pang ◽  
Laifu Song

Because rockfill strength and seismic ground motion are dominant factors affecting the slope stability of rockfill dams, it is very important to accurately characterize the distribution of rockfill strength parameters, develop a stochastic ground motion model suitable for rockfill dam engineering, and effectively couple strength parameters and seismic ground motion to precisely evaluate the dynamic reliability of the three-dimensional (3D) slope stability of rockfill dams. In this study, a joint probability distribution model for rockfill strength based on the copula function and a stochastic ground motion model based on the improved Clough-Penzien spectral model were built; the strength parameters and the seismic ground motion were coupled using the GF-discrepancy method, a method for the analysis of dynamic reliability of the 3D slope stability of rockfill dams was proposed based on the generalized probability density evolution method (GPDEM), and the effectiveness of the proposed method was verified. Moreover, the effect of different joint distribution models on the dynamic reliability of the slope stability of rockfill dams was revealed, the effect of the copula function type on the dynamic reliability of the slope stability was analysed, and the differences in the dynamic reliability of the slope stability under parameter randomness, seismic ground motion randomness, and coupling randomness of parameters and seismic ground motion were systematically determined. The results were as follows: the traditional joint distribution models ignored related nonnormal distribution characteristics of rockfill strength parameters, which led to excessively low calculated failure probabilities and overestimations of the reliability of the slope stability; in practice, we found that the optimal copula function should be selected to build the joint probability distribution model, and seismic ground motion randomness must be addressed in addition to parameter randomness.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1243
Author(s):  
Yit Yin Wee ◽  
Shing Chiang Tan ◽  
KuokKwee Wee

Background: Bayesian Belief Network (BBN) is a well-established causal framework that is widely adopted in various domains and has a proven track record of success in research and application areas. However, BBN has weaknesses in causal knowledge elicitation and representation. The representation of the joint probability distribution in the Conditional Probability Table (CPT) has increased the complexity and difficulty for the user either in comprehending the causal knowledge or using it as a front-end modelling tool.   Methods: This study aims to propose a simplified version of the BBN ─ Bayesian causal model, which can represent the BBN intuitively and proposes an inference method based on the simplified version of BBN. The CPT in the BBN is replaced with the causal weight in the range of[-1,+1] to indicate the causal influence between the nodes. In addition, an inferential algorithm is proposed to compute and propagate the influence in the causal model.  Results: A case study is used to validate the proposed inferential algorithm. The results show that a Bayesian causal model is able to predict and diagnose the increment and decrement as in BBN.   Conclusions: The Bayesian causal model that serves as a simplified version of BBN has shown its advantages in modelling and representation, especially from the knowledge engineering perspective.


Author(s):  
Bitan De ◽  
Piotr Sierant ◽  
Jakub Zakrzewski

Abstract The level statistics in the transition between delocalized and localized {phases of} many body interacting systems is {considered}. We recall the joint probability distribution for eigenvalues resulting from the statistical mechanics for energy level dynamics as introduced by Pechukas and Yukawa. The resulting single parameter analytic distribution is probed numerically {via Monte Carlo method}. The resulting higher order spacing ratios are compared with data coming from different {quantum many body systems}. It is found that this Pechukas-Yukawa distribution compares favorably with {$\beta$--Gaussian ensemble -- a single parameter model of level statistics proposed recently in the context of disordered many-body systems.} {Moreover, the Pechukas-Yukawa distribution is also} only slightly inferior to the two-parameter $\beta$-h ansatz shown {earlier} to reproduce {level statistics of} physical systems remarkably well.


2021 ◽  
Vol 2085 (1) ◽  
pp. 012018
Author(s):  
Peng Wu ◽  
Rongjun Mu ◽  
Bingli Liu

Abstract In the working process of the upper stage integrated navigation information fusion system, the multi-source navigation information fusion algorithm based on factor graph Bayesian estimation is used to fuse the information of inertial sensors, visual sensors and other sensors. The overall joint probability distribution of the system is described in the form of probability graph model with the dependence of local variables, so as to reduce the complexity of the system, adjust the data structure of information fusion to improve the efficiency of information fusion and smoothly switch the sensor configuration.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 485
Author(s):  
Prabhakar Pradhan

Light wave reflection intensity from optical disordered media is associated with its phase, and the phase statistics influence the reflection statistics. A detailed numerical study is reported for the statistics of the reflection coefficient and its associated phase for plane electromagnetic waves reflected from one dimensional Gaussian white-noise optical disordered media, ranging from weak to strong disordered regimes. The full Fokker–Planck (FP) equation for the joint probability distribution in the space is simulated numerically for varying length and disorder strength of the sample; and the statistical optical transport properties are calculated. Results show the parameter regimes of the validation of the random phase approximations (RPA) or uniform phase distribution, within the Born approximation, as well as the contribution of the phase statistics to the different reflections, averaging from nonuniform phase distribution. This constitutes a complete solution for the reflection phase statistics and its effect on light transport properties in a 1D Gaussian white-noise disordered optical potential.


2021 ◽  
Author(s):  
Juan C. Méndez-Vizcaíno ◽  
Alexander Guarín ◽  
César Anzola-Bravo ◽  
Anderson Grajales-Olarte

Since July 2021, Banco de la República strengthened its forecasting process and communication instruments, by involving predictive densities on the projections of its models, PATACON and 4GM. This paper presents the main theoretical and empirical elements of the predictive density approach for macroeconomic forecasting. This model-based methodology allows to characterize the balance of risks of the economy, and quantify their effects through a joint probability distribution of forecasts. We estimate this distribution based on the simulation of DSGE models, preserving the general equilibrium relationships and their macroeconomic consistency. We also illustrate the technical criteria used to represent the prospective factors of risk through the probability distributions of shocks.


Sign in / Sign up

Export Citation Format

Share Document