scholarly journals The Exponential Diophantine Equation4m2+1x+5m2-1y=(3m)z

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Juanli Su ◽  
Xiaoxue Li

Letmbe a positive integer. In this paper, using some properties of exponential diophantine equations and some results on the existence of primitive divisors of Lucas numbers, we prove that ifm>90and3|m, then the equation4m2+1x + 5m2-1y=(3m)zhas only the positive integer solution(x,y,z)=(1,1,2).

2014 ◽  
Vol 64 (5) ◽  
Author(s):  
Jianping Wang ◽  
Tingting Wang ◽  
Wenpeng Zhang

AbstractLet n be a positive integer. In this paper, using the results on the existence of primitive divisors of Lucas numbers and some properties of quadratic and exponential diophantine equations, we prove that if n ≡ 3 (mod 6), then the equation x 2 + (3n 2 + 1)y = (4n 2 + 1)z has only the positive integer solutions (x, y, z) = (n, 1, 1) and (8n 3 + 3n, 1, 3).


2021 ◽  
Vol 45 (1) ◽  
pp. 127-129
Author(s):  
Shah Mohammad Shahidul Islam ◽  
Abdullah Al Kafi Majumdar

This paper provides an analytical method of finding all the (positive, integral) solutions of the Diophantine equation z2 = k(k2+3). We also prove analytically that the Diophantine equation z2 = k(k2+12) has no positive, integer solution. J. Bangladesh Acad. Sci. 45(1); 127-129: June 2021


2020 ◽  
Vol 57 (2) ◽  
pp. 200-206
Author(s):  
Elif kizildere ◽  
Maohua le ◽  
Gökhan Soydan

AbstractLet l,m,r be fixed positive integers such that 2| l, 3lm, l > r and 3 | r. In this paper, using the BHV theorem on the existence of primitive divisors of Lehmer numbers, we prove that if min{rlm2 − 1,(l − r)lm2 + 1} > 30, then the equation (rlm2 − 1)x + ((l − r)lm2 + 1)y = (lm)z has only the positive integer solution (x,y,z) = (1,1,2).


2019 ◽  
Vol 15 (05) ◽  
pp. 1069-1074 ◽  
Author(s):  
Hai Yang ◽  
Ruiqin Fu

Let [Formula: see text] be a positive integer with [Formula: see text], and let [Formula: see text] be an odd prime. In this paper, by using certain properties of Pell’s equations and quartic diophantine equations with some elementary methods, we prove that the system of equations [Formula: see text] [Formula: see text] and [Formula: see text] has positive integer solutions [Formula: see text] if and only if [Formula: see text] and [Formula: see text] satisfy [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are positive integers. Further, if the above condition is satisfied, then [Formula: see text] has only the positive integer solution [Formula: see text]. By the above result, we can obtain the following corollaries immediately. (i) If [Formula: see text] or [Formula: see text], then [Formula: see text] has no positive integer solutions [Formula: see text]. (ii) For [Formula: see text], [Formula: see text] has only the positive integer solutions [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text].


2012 ◽  
Vol 241-244 ◽  
pp. 2650-2653
Author(s):  
Jian Ping Wang

ln this paper, using a deep result on the existence of primitive divisors of Lehmer numbers given by Y. Bilu, G. Hanrot and P. M. Voutier, we prove that the equation has no positive integer solution (x, y, m, p, q), where p and q are odd primes with p>3, gcd(x, y)=1 and y is not the sum of two consecutive squares.


2020 ◽  
Vol 55 (2) ◽  
pp. 195-201
Author(s):  
Maohua Le ◽  
◽  
Gökhan Soydan ◽  

Let A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x > z > y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).


Author(s):  
Sukrawan Mavecha

AbstractWe consider the Diophantine equation x2-kxy+ky2+ ly = 0 for l = 2nand determine for which values of the odd integer k, it has a positive integer solution x and y.


2021 ◽  
Vol 6 (10) ◽  
pp. 10596-10601
Author(s):  
Yahui Yu ◽  
◽  
Jiayuan Hu ◽  

<abstract><p>Let $ k $ be a fixed positive integer with $ k &gt; 1 $. In 2014, N. Terai <sup>[<xref ref-type="bibr" rid="b6">6</xref>]</sup> conjectured that the equation $ x^2+(2k-1)^y = k^z $ has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. This is still an unsolved problem as yet. For any positive integer $ n $, let $ Q(n) $ denote the squarefree part of $ n $. In this paper, using some elementary methods, we prove that if $ k\equiv 3 $ (mod 4) and $ Q(k-1)\ge 2.11 $ log $ k $, then the equation has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. It can thus be seen that Terai's conjecture is true for almost all positive integers $ k $ with $ k\equiv 3 $(mod 4).</p></abstract>


2021 ◽  
Vol 5 (1) ◽  
pp. 115-127
Author(s):  
Van Thien Nguyen ◽  
◽  
Viet Kh. Nguyen ◽  
Pham Hung Quy ◽  
◽  
...  

Let \((a, b, c)\) be a primitive Pythagorean triple parameterized as \(a=u^2-v^2, b=2uv, c=u^2+v^2\), where \(u>v>0\) are co-prime and not of the same parity. In 1956, L. Jesmanowicz conjectured that for any positive integer \(n\), the Diophantine equation \((an)^x+(bn)^y=(cn)^z\) has only the positive integer solution \((x,y,z)=(2,2,2)\). In this connection we call a positive integer solution \((x,y,z)\ne (2,2,2)\) with \(n>1\) exceptional. In 1999 M.-H. Le gave necessary conditions for the existence of exceptional solutions which were refined recently by H. Yang and R.-Q. Fu. In this paper we give a unified simple proof of the theorem of Le-Yang-Fu. Next we give necessary conditions for the existence of exceptional solutions in the case \(v=2,\ u\) is an odd prime. As an application we show the truth of the Jesmanowicz conjecture for all prime values \(u < 100\).


Sign in / Sign up

Export Citation Format

Share Document