scholarly journals Global Existence of the Cylindrically Symmetric Strong Solution to Compressible Navier-Stokes Equations

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Jian Liu ◽  
Ruxu Lian

This paper is concerned with the initial boundary value problem for the three-dimensional Navier-Stokes equations with density-dependent viscosity. The cylindrically symmetric strong solution is shown to exist globally in time and tend to the equilibrium state exponentially as time grows up.

The modifications of the three-dimensional Navier-Stokes equations, which I suggested earlier for the description of viscous fluid flows with large gradients of velocities, are considered. It is proved that the first initial-boundary value problem for these equations in any bounded three-dimensional domain has a compact minimal global B-attractor. Some properties of the attractor are established.


2012 ◽  
Vol 2012 ◽  
pp. 1-22
Author(s):  
Ruxu Lian ◽  
Lan Huang ◽  
Jian Liu

We consider the exterior problem and the initial boundary value problem for the spherically symmetric isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient in this paper. For regular initial density, we show that there exists a unique global strong solution to the exterior problem or the initial boundary value problem, respectively. In particular, the strong solution tends to the equilibrium state ast→+∞.


2019 ◽  
Vol 150 (4) ◽  
pp. 1671-1698 ◽  
Author(s):  
K. Abe ◽  
G. Seregin

AbstractWe study an initial-boundary value problem of the three-dimensional Navier-Stokes equations in the exterior of a cylinder $\Pi =\{x=(x_{h}, x_3)\ \vert \vert x_{h} \vert \gt 1\}$, subject to the slip boundary condition. We construct unique global solutions for axisymmetric initial data $u_0\in L^{3}\cap L^{2}(\Pi )$ satisfying the decay condition of the swirl component $ru^{\theta }_{0}\in L^{\infty }(\Pi )$.


2008 ◽  
Vol 18 (08) ◽  
pp. 1383-1408 ◽  
Author(s):  
YUMING QIN ◽  
YANLI ZHAO

In this paper, we prove the global existence and asymptotic behavior of solutions in Hi(i = 1, 2) to an initial boundary value problem of a 1D isentropic, isothermal and the compressible viscous gas with an non-autonomous external force in a bounded region.


Author(s):  
Nguyen Toan

In this paper, we study the long-time dynamical behavior of the non-autonomous velocity-vorticity-Voigt model of the 3D Navier-Stokes equations with damping and memory. We first investigate the existence and uniqueness of weak solutions to the initial boundary value problem for above-mentioned model. Next, we prove the existence of uniform attractor of this problem, where the time-dependent forcing term $f \in L^2_b(\mathbb{R}; H^{-1}(\Omega))$ is only translation bounded instead of translation compact. The results in this paper will extend and improve some results in Yue, Wang (Comput. Math. Appl., 2020) in the case of non-autonomous and contain memory kernels which have not been studied before.


Sign in / Sign up

Export Citation Format

Share Document