scholarly journals Existence and long-time behavior of solutions to the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations with damping and memory

Author(s):  
Nguyen Toan

In this paper, we study the long-time dynamical behavior of the non-autonomous velocity-vorticity-Voigt model of the 3D Navier-Stokes equations with damping and memory. We first investigate the existence and uniqueness of weak solutions to the initial boundary value problem for above-mentioned model. Next, we prove the existence of uniform attractor of this problem, where the time-dependent forcing term $f \in L^2_b(\mathbb{R}; H^{-1}(\Omega))$ is only translation bounded instead of translation compact. The results in this paper will extend and improve some results in Yue, Wang (Comput. Math. Appl., 2020) in the case of non-autonomous and contain memory kernels which have not been studied before.

2008 ◽  
Vol 18 (08) ◽  
pp. 1383-1408 ◽  
Author(s):  
YUMING QIN ◽  
YANLI ZHAO

In this paper, we prove the global existence and asymptotic behavior of solutions in Hi(i = 1, 2) to an initial boundary value problem of a 1D isentropic, isothermal and the compressible viscous gas with an non-autonomous external force in a bounded region.


The modifications of the three-dimensional Navier-Stokes equations, which I suggested earlier for the description of viscous fluid flows with large gradients of velocities, are considered. It is proved that the first initial-boundary value problem for these equations in any bounded three-dimensional domain has a compact minimal global B-attractor. Some properties of the attractor are established.


Sign in / Sign up

Export Citation Format

Share Document