scholarly journals Introduction to gb-Triple Systems

ISRN Algebra ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Guy Roger Biyogmam

This paper introduces the category of gb-triple systems and studies some of their algebraic properties. Also provided is a functor from this category to the category of Leibniz algebras.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Revaz Kurdiani

AbstractThe present paper deals with the Lie triple systems via Leibniz algebras. A perfect Lie algebra as a perfect Leibniz algebra and as a perfect Lie triple system is considered and the appropriate universal central extensions are studied. Using properties of Leibniz algebras, it is shown that the Lie triple system universal central extension is either the universal central extension of the Leibniz algebra or the universal central extension of the Lie algebra.


Author(s):  
Hamid Abchir ◽  
Fatima-ezzahrae Abid ◽  
Mohamed Boucetta

We classify symmetric Leibniz algebras in dimensions 3 and 4 and we determine all associated Lie racks. Some of such Lie racks give rise to nontrivial topological quandles. We study some algebraic properties of these quandles and we give a necessary and sufficient condition for them to be quasi-trivial.


2016 ◽  
Vol 10 (3) ◽  
pp. 259-270
Author(s):  
Ludmila Matienko ◽  
◽  
Larisa Mosolova ◽  
Vladimir Binyukov ◽  
Gennady Zaikov ◽  
...  

Mechanism of catalysis with binary and triple catalytic systems based on redox inactive metal (lithium) compound {LiSt+L2} and {LiSt+L2+PhOH} (L2=DMF or HMPA), in the selective ethylbenzene oxidation by dioxygen into -phenylethyl hydroperoxide is researched. The results are compared with catalysis by nickel-lithium triple system {NiII(acac)2+LiSt+PhOH} in selective ethylbenzene oxidation to PEH. The role of H-bonding in mechanism of catalysis is discussed. The possibility of the stable supramolecular nanostructures formation on the basis of triple systems, {LiSt+L2+PhOH}, due to intermolecular H-bonds, is researched with the AFM method.


2018 ◽  
Vol 2018 (3) ◽  
pp. 4-17
Author(s):  
K.K. Abdurasulov ◽  
Drew Horton ◽  
U.X. Mamadaliyev

Author(s):  
Ataru Tanikawa ◽  
Tomoya Kinugawa ◽  
Jun Kumamoto ◽  
Michiko S Fujii

Abstract We estimate formation rates of LB-1-like systems through dynamical interactions in the framework of the theory of stellar evolution before the discovery of the LB-1 system. The LB-1 system contains a ∼70 ${M_{\odot}}$ black hole (BH), a so-called pair instability (PI) gap BH, and a B-type star with solar metallicity, and has nearly zero eccentricity. The most efficient formation mechanism is as follows. In an open cluster, a naked helium star (with ∼20 ${M_{\odot}}$) collides with a heavy main sequence star (with ∼50 ${M_{\odot}}$) which has a B-type companion. The collision results in a binary consisting of the collision product and the B-type star with a high eccentricity. The binary can be circularized through the dynamical tide with radiative damping of the collision product envelope. Finally, the collision product collapses to a PI-gap BH, avoiding pulsational pair instability and pair instability supernovae because its He core is as massive as the pre-colliding naked He star. We find that the number of LB-1-like systems in the Milky Way galaxy is ∼0.01(ρoc/104 ${M_{\odot}}$ pc−3), where ρoc is the initial mass densities of open clusters. If we take into account LB-1-like systems with O-type companion stars, the number increases to ∼0.03(ρoc/104 ${M_{\odot}}$ pc−3). This mechanism can form LB-1-like systems at least ten times more efficiently than the other mechanisms: captures of B-type stars by PI-gap BHs, stellar collisions between other types of stars, and stellar mergers in hierarchical triple systems. We conclude that no dynamical mechanism can explain the presence of the LB-1 system.


2021 ◽  
pp. 1-12
Author(s):  
G. R. Biyogmam ◽  
C. Tcheka
Keyword(s):  

2021 ◽  
Vol 1100 (1) ◽  
pp. 012046
Author(s):  
A V Sobachkin ◽  
A Yu Myasnikov ◽  
A A Sitnikov ◽  
M V Loginova ◽  
V I Yakovlev ◽  
...  

2021 ◽  
Vol 344 (6) ◽  
pp. 112373
Author(s):  
Juanjuan Xu ◽  
Lijun Ji
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document