scholarly journals Mellin Transform Method for European Option Pricing with Hull-White Stochastic Interest Rate

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ji-Hun Yoon

Even though interest rates fluctuate randomly in the marketplace, many option-pricing models do not fully consider their stochastic nature owing to their generally limited impact on option prices. However, stochastic dynamics in stochastic interest rates may have a significant impact on option prices as we take account of issues of maturity, hedging, or stochastic volatility. In this paper, we derive a closed form solution for European options in Black-Scholes model with stochastic interest rate using Mellin transform techniques.

2016 ◽  
Vol 4 (3) ◽  
pp. 244-257
Author(s):  
Delei Sheng

AbstractThis paper considers the reinsurance-investment problem for an insurer with dynamic income to balance the profit of insurance company and policy-holders. The insurer’s dynamic income is given by a net premium minus a dynamic reward budget item and the net premium is obtained according to the expected premium principle. Applying the stochastic control technique, a Hamilton-Jacobi-Bellman equation is established under stochastic interest rate model and the explicit solution is obtained by maximizing the insurer’s power utility of terminal wealth. In addition, the comparison with corresponding results under constant interest rate helps us to understand the role and influence of stochastic interest rates more in-depth.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Mei Choi Chiu ◽  
Hoi Ying Wong

A fundamental challenge for insurance companies (insurers) is to strike the best balance between optimal investment and risk management of paying insurance liabilities, especially in a low interest rate environment. The stochastic interest rate becomes a critical factor in this asset-liability management (ALM) problem. This paper derives the closed-form solution to the optimal investment problem for an insurer subject to the insurance liability of compound Poisson process and the stochastic interest rate following the extended CIR model. Therefore, the insurer’s wealth follows a jump-diffusion model with stochastic interest rate when she invests in stocks and bonds. Our problem involves maximizing the expected constant relative risk averse (CRRA) utility function subject to stochastic interest rate and Poisson shocks. After solving the stochastic optimal control problem with the HJB framework, we offer a verification theorem by proving the uniform integrability of a tight upper bound for the objective function.


Sign in / Sign up

Export Citation Format

Share Document