closed form solution
Recently Published Documents


TOTAL DOCUMENTS

2499
(FIVE YEARS 520)

H-INDEX

62
(FIVE YEARS 9)

Author(s):  
Bohua Sun

In this paper, a century-old problem is solved; namely, to find a unified analytic description of the non-uniform distribution of mean velocity across the entire domain of turbulent flow for all Reynolds numbers within the framework of the Prandtl mixing length theory. This study obtains a closed form solution of the mean velocity profile of plane turbulent flow for the Prandtl theory, and as well an approximate analytical solution for the van Driest mixing length theory. The profiles of several useful quantities are given based the closed form solution, such as turbulent viscosity, Reynolds turbulent stress, Kolmogorov's scaling law, and energy dissipation density. The investigation shows that the energy dissipation density at the surface is finite, whereas Landau's energy dissipation density is infinite. Strictly speaking, the closed form solution reveals that the universality of the turbulent velocity logarithmic profile no longer holds, but the von K\'arm\'an constant is still universal. Furthermore, a new formulation of the resistance coefficient of turbulent flow in pipes is formulated in implicit form.


2022 ◽  
Vol 18 ◽  
Author(s):  
Maria Yasin ◽  
Sadia Hina ◽  
Rahila Naz ◽  
Thabet Abdeljawad ◽  
Muhammad Sohail

Aims:: This article is intended to investigate and determine combined impact of Slip and Hall current on Peristaltic transmission of Magneto-hydrodynamic (MHD) Eyring-Powell fluid. Background: The hall term arises taking strong force-field under consideration. Velocity, thermal and concentration slip conditions are applied. Energy equation is modeled by considering Joule-thermal effect. To observe non-Newtonian behavior of fluid the constitutive equations of Eyring-Powell fluid is encountered. Objective: Flow is studied in a wave frame of reference travelling with velocity of wave. The mathematical modeling is done by utilizing adequate assumptions of long wavelength and low Reynolds number. Method: The closed form solution for momentum, temperature and concentration distribution is computed analytically by using regular perturbation technique for small fluid parameter(A). Results: Graphical results are presented and discussed in detail to analyze behavior of sundry parameters on flow quantities (i.e. velocity, temperature and concentration profile). It is noticed that Powell-Eyring fluid parameters (A,B) have a significant role on the outcomes. Conclusion: The fluid parameter A magnifies the velocity profile whereas, the other fluid parameter B shows the opposite behavior.


Author(s):  
Abdurrahman Yilmaz ◽  
Hakan Temeltas

AbstractThe problem of matching point clouds is an efficient way of registration, which is significant for many research fields including computer vision, machine learning, and robotics. There may be linear or non-linear transformation between point clouds, but determining the affine relation is more challenging among linear cases. Various methods have been presented to overcome this problem in the literature and one of them is the affine variant of the iterative closest point (ICP) algorithm. However, traditional affine ICP variants are highly sensitive to effects such as noises, deformations, and outliers; the least-square metric is substituted with the correntropy criterion to increase the robustness of ICPs to such effects. Correntropy-based robust affine ICPs available in the literature use point-to-point metric to estimate transformation between point clouds. Conversely, in this study, a line/surface normal that examines point-to-curve or point-to-plane distances is employed together with the correntropy criterion for affine point cloud registration problems. First, the maximum correntropy criterion measure is built for line/surface normal conditions. Then, the closed-form solution that maximizes the similarity between point sets is achieved for 2D registration and extended for 3D registration. Finally, the application procedure of the developed robust affine ICP method is given and its registration performance is examined through extensive experiments on 2D and 3D point sets. The results achieved highlight that our method can align point clouds more robustly and precisely than the state-of-the-art methods in the literature, while the registration time of the process remains at reasonable levels.


2021 ◽  
Vol 7 (4) ◽  
pp. 1-16
Author(s):  
Matthew A. Petroff

A novel square equal-area map projection is proposed. The projection combines closed-form forward and inverse solutions with relatively low angular distortion and minimal cusps, a combination of properties not manifested by any previously published square equal-area projection. Thus, the new projection has lower angular distortion than any previously published square equal-area projection with a closed-form solution. Utilizing a quincuncial arrangement, the new projection places the north pole at the center of the square and divides the south pole between its four corners; the projection can be seamlessly tiled. The existence of closed-form solutions makes the projection suitable for real-time visualization applications, both in cartography and in other areas, such as for the display of panoramic images.


Author(s):  
Wenjie Ma ◽  
Yao Shan ◽  
Binglong Wang ◽  
Shunhua Zhou

The torsional dynamic response of a pile embedded in transversely isotropic saturated soil is investigated while allowing for the construction of disturbance effect. The dynamic governing equations of soil are established based on Biot’s poroelastic theory. By virtue of the continuous conditions of stress and displacement of adjacent disturbance circle and the boundary conditions of pile-soil coupling system, the circumferential displacement of soil and the shear stress on pile-soil contact surface are derived. Subsequently, a closed-form solution for the torsional dynamic response of a pile is derived in the frequency domain. By using inverse Fourier transform and the convolution theorem, a quasi-analytical solution for the velocity response of the pile head subjected to a semi-sine excitation torque is derived in the time domain. The proposed analytical solution is verified by comparing with the two existing solutions available in literature. Following the present solution, a parameter study is undertaken to portray the influence on the complex impedance, twist angle and torque of pile.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Mao Chen ◽  
Guanqi Liu ◽  
Yuwen Wang

At present, the study concerning pricing variance swaps under CIR the (Cox–Ingersoll–Ross)–Heston hybrid model has achieved many results ; however, due to the instantaneous interest rate and instantaneous volatility in the model following the Feller square root process, only a semi-closed solution can be obtained by solving PDEs. This paper presents a simplified approach to price log-return variance swaps under the CIR–Heston hybrid model. Compared with Cao’s work, an important feature of our approach is that there is no need to solve complex PDEs; a closed-form solution is obtained by applying the martingale theory and Ito^’s lemma. The closed-form solution is significant because it can achieve accurate pricing and no longer takes time to adjust parameters by numerical method. Another significant feature of this paper is that the impact of sampling frequency on pricing formula is analyzed; then the closed-form solution can be extended to an approximate formula. The price curves of the closed-form solution and the approximate solution are presented by numerical simulation. When the sampling frequency is large enough, the two curves almost coincide, which means that our approximate formula is simple and reliable.


Sign in / Sign up

Export Citation Format

Share Document